French Canal Snubbing Post

After nearly three years of effort by Bill McKelvey, a stone snubbing post from the Canal du Midi has arrived at the museum of the Canal Society of New Jersey at Waterford Village. This 425-pound stone, deeply scarred by the ropes of the many boats that passed through the lock it stood beside, is probably over 500 years old. The Canal du Midi was opened in 1681, following a route originally surveyed by Leonardo da Vinci in 1515 to link the Atlantic Ocean and the Mediterranean Sea. It was the first major canal to cross a watershed, and the greatest work of engineering in the world at the time of its construction. Its 150 miles were visited by Francis Egerton, the future Duke of Bridgewater, and inspired him to pioneer the development of canals in England. This stone thus provides the CSPNJ Museum with a link back to the earliest development of canals in the western hemisphere, a solid example of the engineering heritage behind the Monticello & Delaware & Raritan Canals of New Jersey.

The stone was discovered by Bill by the side of the roadway on a bridge over the canal in the town of Castelnau, having apparently been moved from its place by the canal after breaking off at ground level. Descending it as a "french soldier", Bill arranged for the stone's donation to the museum and handled the two years of dealing with red tape that it took to get to Waterford. We hope it will rest happily there, and that this little French "soldier" will find New Jersey's Waterford a more hospitable place than the village it was named after was for the army of Napoléon in 1815.

All-American Canal

The Army Corps of Engineers is currently conducting a series of Public Information Workshops in connection with a survey-study for a "Great Lakes to Eastern Seaboard All-American Canal". The four possible routes for such a major canal are shown above. Your comments are invited, and may be sent to the New York District, Corps of Engineers, 26 Federal Plaza, N.Y.C. 10007.

SHADES OF THE "QUEEN MARY"

This undated photograph shows the R.M.S. QUEEN MARY transiting Lock #6 of the New York State Barge Canal, Erie Division, at Waterford, N.Y. This, as well as many other focal photo postcards, is on sale at this George No. Mitchen Store, 56 Broad St., Waterford, N.Y. 12188. (Submitted by Bill McKelvey)
American Canals
BULLETIN OF THE AMERICAN CANAL SOCIETY

"DEDICATED TO HISTORIC CANAL RESEARCH, PRESERVATION AND FARMS"

AMERICAN CANALS is issued quarterly by the American Canal Society, Incorporated. Objectives of the Society are to encourage the preservation, restoration, interpretation and use of the historic navigational canals of the Americas; to save threatened canals; and to provide an exchange of canal information.

Annual subscription to "AMERICAN CANALS" is automatic with a minimum ACS dues payment of $8.00. Individual copies may be purchased at $2.00.

EDITOR — Capt. Thomas F. Hahn, USN (Ret.), Box 310, Shepherdstown, WV 25443.

PRESIDENT — William H. Shank, P.E., 809 Rolton Road, York, PA 17406.

VICE PRESIDENT — Dr. William F. Trout III, 1929 Cinco Robles Dr., Duarte, CA 91010. Editor, AMERICAN CANAL GUIDE.

SECRETARY-TREASURER — Charles W. Derr, 117 Main Street, Phoenixburg, PA 18971.

Once a year, during Bill Trout's annual trek from California to the East, the three Principals of the American Canal Society get together for an informal discussion of the affairs and policies of the Society. This year, their meeting was held on May 3, 1980 at the home of the Hahns in Steptoe town, West Virginia. Left to right: Bill Trout, Bill Shank and Tom Hahn. These three men founded the American Canal Society (in Maryland) in 1972.

CANAL CALENDAR

May 24-June 30 — Lowell, Mass.; Mill and Canal Tours; Northampton Canal Tours; Power Canal Tours; Contact: Lowell National Historical Park, 171 Merrimack St., P.O. Box 1098, Lowell, MA 01850

June 23-26 — Tour of historical sites (some canals) in southern New England. Contact: Canal Society of New Jersey, Box 737, Middletown, New Jersey 07740.

August 17-19 — Coshodron Canal Festival, Contact: Nancy Lessinger, 381 Hill St., Coalitions, Ohio 43612

October 10-12 — Pennsylvania Canal Society Tour, Chesapeake and Delaware Canal, (from Wilmington), Contact: Dr. Zep Zimmer, 1300 River Road, D. #1, Yardley PA 19067

October, 1980 — Canal Society of Ohio Tour; Miami and Erie Canal; Picnic at Dayton (assisted by Great Miami River Corridor Committee). Write: Herb Votrey, 6963 Grand View Ave., Cincinnati, OH 45213

October, 1980 — Canal Society of New Jersey, New York Harbor boat tour of canal structure. Write: Bill McKalvey, Jr., 58 Walden Avenue, Bloomfield, New Jersey, 07003

(Editors's Note: Please send us further details of your Fall 1980 canal meetings or tours in time for our next issue: deadline August 1, 1980)

Amバッグ

Alexandria Canal Tidelock

The Alexandria Canal Tidelock at Alexandria, Virginia is now on the National Register of Public Places, culminating three years' work by William Mitchell (ACS) and other interested citizens. Restoration of the lock and a park are the final aim, but work in that direction has been held up pending a title suit as to the ownership of the land on which the lock is located.

Morris Canal – ASCE Landmark

A unique civil engineering system that enabled vessels in northern New Jersey's old Morris Canal to surmount 900-foot high mountainous terrain along the canal route has been named a National Historic Civil Engineering Landmark by the American Society of Civil Engineers.

The system, which used 23 hydraulic-powered inclined planes in combination with canal locks, permitted canal boats to "climb" more than 914 feet from the tidewater area of Newark Bay to the Summit level at the tip of Lake Hopatcong. From there the boats were gradually lowered 760 feet to the Delaware River at Philadelphia. The total rise and fall was just over 1,674 feet in slightly more than 90 miles — an impressive civil engineering achievement for the early 19th century.

The canal operated for almost a century following its opening in 1831, reaching a peak activity in 1866, just after the Civil War, when more than 800,000 tons were shipped.

Destruction of D&R Canal Lock

Lock 13 of the Delaware and Raritan Canal at New Brunswick has now been destroyed in accordance with the desires of the Department of Transportation and the State of New Jersey and in opposition to the Canal Society of New Jersey, the Delaware and Raritan Canal Coalition, the American Canal Society, and others. The view above, taken in 1975 (from the West) shows the intact lock. The view below (from the East) shows the lock being destroyed in 1980. The lock will be filled in and the locktender's house will be moved East to the outlet lock which is scheduled to be restored in a trade-off. Preliminary work on the restoration has been done by volunteers. (Submitted by Bill McKalvey)
The Canal at Sainte Marie Among the Hurons

by Christopher Andrease

Near the Town of Midland, Ontario stands the reconstructed Jesuit mission of "Sainte Marie-among-the-Hurons." This fortified mission was originally constructed in the 1640's as part of the Jesuit's efforts to Christianize the Huron Indians. Among the attractions of the mission is a very short canal, roughly 78 meters long, containing three locks with a total lift of about 3.7 meters. If a canal had been built on the site, and considerable controversy surrounds this hypothesis, this structure would have been the first artificial canal dug in North America.

But was a canal have been dug in the wilderness and isolation of French North America? Most of southern Ontario prior to the arrival of the white man was the territory of the Huron Indians. French traders and missionaries only ventured into the area after 1610 to gradually establish friendly relations and a flourishing fur trade with the Indians. Jesuit missionaries, concerned with the spiritual welfare of the Indians, went among the tribes to bring Christian ideas. In 1639 a group of Jesuits established a mission called "Sainte Marie Among the Hurons" on the bank of the Wyo River, about one kilometer inland from Georgian Bay and near the modern Town of Midland (see map). Over the approximately ten years that the site was occupied, the mission was enlarged to accommodate a large number of Hurons and Indians. The canal was presumably built in the mid 1640's.

This canal was thought to have served two purposes (see plan). After the initial mission had been constructed of wood, new buildings were erected beside it. A canal would have provided the lift needed to raise barges of stone to the mission complex. In addition, landing areas were provided along the canal at locks two and three. These landing areas would have facilitated the loading and unloading of canoes. Although not a large waterway, the canoes received lustral rites as gifts from the Indians.

As reconstructed, the overall impression of the structure is of an irrigation system with success and failure not at fault of a navigable canal. The canals and lock banks are made of wooden planks, roughly 12 cm. in diameter, driven into the ground. The locks vary considerably in size, the first being only 5.6 meters, the second 12.5 meters, and the third, a massive 18.6 meters long. The canal has a standard width of 5 meters, about the size of a residential street.

The lock gates move vertically and are operated by windlasses. When the gate is lifted there is about one half meter of clearance above the water level. The lock is lifted in stages of approximately one meter. In order to operate the lock, the gate is lifted slowly to allow water from the upper chamber to flow into the lower chamber. Since the chambers get progressively larger with each lift, excess water flows into the lower chambers, which is allowed to flow over the top of the lower gates. Water for the original operation of the locks is thought to have been taken from springs located several hundred meters from the mission and brought to the canal in an aqueduct. Today water is pumped from the river to provide demonstrations of the lockage. Above the third lock, the canal makes a sharp bend and continues for another ten or twelve meters before gradually disappearing. This bend effectively prevents navigation above the third lock and the western end of the canal is thought to have provided a water supply for the mission and as a reservoir for the lock operations.

This is how the canal was described and reconstructed for the Ontario Government by the supervision of Wilfrid Jury during the 1950's and 1960's. Mr. Jury was a respected archaeologist of Indian and European sites in Southern Ontario. Unfortunately, there appear to be few written records on which to base the theory of a canal reconstruction. Detailed notes of Jury's excavations have not been made public and there seems to be more doubt that the canal existed than proof that it did. When the mission was abandoned by the Hurons in 1649 they burned the site. Thus the only archaeological remains to be found are those that lay below ground or underwater and that escaped the flames. One thing is certain, though, that a manmade waterway did pass through the mission. Before the mission was excavated, the channel of the assumed canal was a prominent feature. Nineteenth and twentieth century visitors to the site all commented on this feature. Remains of the bank pilings were discovered but no conclusive evidence of lock structures could be determined.

If a navigable canal with locks had been built, it is not surprising that it was undertaking by the Jesuit Order. At a teaching religious order, they would have been aware of the technological developments of canals in Europe. The theory of locks was understood in Europe and had been applied in several cases by the seventeenth century. But the construction in France of a canal such as the Briare Canal connecting the Loire and the Saone Rivers, dug between 1605 and 1624, and reputed to contain the first locks in France, is a far cry from what a small wooden canal in the wilderness of Canada.

Canals such as the Briare Canal were built to cheapen the cost of transportation. Some canals, such as the later Rideau Canal in Canada, were dug primarily for military purposes. Neither case would apply at Ste. Marie. The cost of transportation was dictated by the long canoes trip from Quebec and not by the cost of digging the mission compound. Similarly the canal provided minimal defensive protection. A canoe would have to travel over a kilometer from Georgina Bay down the Wyo River, exposed to enemy attack from both banks before reaching the safety of the mission.

The use of the canal to simplify stone movement into the mission has not been ruled out by Jury, but there is no evidence that easier alternatives were available. All of the four meters lift between the river and the mission is at the river's bank and the rest of the site is relatively flat. An incline hoist could have been built with less effort. Given the more pressing needs of shelter, protection and religious activities, it seems unlikely that the Jesuits would have taken the time to erect locks in the mission.

In any case, to reach the site of Ste. Marie from Quebec, the traveler had to endure over 350 portages why they would need to transport to a lock trip for the last four meter rise into the mission.

What could this channel have been used for once all evidence suggests some sort of water course? Various theories have been put forward including a defensive moat, a mill race for a grist mill and a drainage ditch. It could also have been used to supply water to a sanitary system.

The staff of the reconstructed mission have developed a theory that the waterway may have been used for religious purposes. The Jesuits, in their efforts to Christianize the Hurons, attempted to prove the white man's importance by controlling and predicting various elements that played an important role in the Huron religion. Since water was an essential component of their religion, the Jesuits may have constructed the canal to demonstrate their control over water.

The Ontario Government took the Jury theory of a navigable canal with locks and restored it in the mission during the 1960's. Although developed in controversy, the reconstruction provides interesting speculation. Anyone wishing to pursue the arguments for and against the canal should visit the site, watch a canoe being launched through and come up with your own theory.
The Panama Canal, at Miraflores Locks, with two ships passing through in opposite directions.

by Ernest H. Schell

The two fundamental questions about an American canal—what type of canal it should be and where to build it—remained highly controversial, the question of a sea-level project versus a lock canal coming under Congressional review even after construction of a lock canal had already begun. The decision to pick up where the French left off in Panama had been a political issue to begin with. Senator John T. Morgan, the strongest proponent of an American canal in Central America, was adamantly against a Panama route, favoring Nicaragua; a more politically stable country with a magnificent lake and terrain that would allow the lowest elevation for a canal anywhere on the isthmus. Nor was Nicaragua, unlike Panama, a land of presidential jungle. That a canal at Nicaragua would also be nearly 600 miles closer to the Gulf State and Morgan's home state of Alabama was certainly a further point in its favor. But for several decades, beginning with the 1878 report of the Canal Commission, the opinion of a variety of American technicians and engineers who had explored the possibility of an interoceanic canal also confirmed the advantages of a Nicaragua route, so Morgan, who was chairman of the Senate Committee on Interocanics, could rely on more than his own personal prejudices in support of what had become for him a lifelong crusade.

Leaving aside the complex issues of international politics that ultimately determined the location of the American canal, and focusing instead on technical questions, we find that here too politics played a crucial role. Rather than going ahead at Nicaragua, as nearly everyone assumed the United States would do, Congress set up the Walker Commission in 1900 to make a final decision on the canal route. The decision to create this body came only after a strenuous lobbying effort on the part of William Nelson Cromwell, the New York lawyer serving as agent of the French canal company, who was eager to have the Americans buy out the French interests in Panama. Cromwell, a clever backstairs manipulator, was also influential with President McKinley in gaining the appointment of several engineers to the committee whom he considered amenable to his plans. Arranging for the Commission to begin its research in Paris, not Central America, Cromwell skillfully managed the presentation of technical data in such a way as to win over a majority of the commissioners.

Foremost among the engineers on the Walker committee was George Shattuck Morrison, a brilliant bridge engineer who was not patsy for the likes of Cromwell. Yet he, too, came away convinced of the superiority of Panama. Panama would make possible a shorter canal with fewer locks than the one at Nicaragua; fewer locks would be required, better harbors were available. A Panama canal would be less expensive to run, and the railroad that had already been built there would greatly facilitate construction, to say nothing of the head start afforded by the French work.

It was not the report of the engineers on the Walker Commission that solved the issue. As David McCullough points out in his superb study, The Path Between the Seas, the Senators who had to make the final decision were not likely to have either read or digested the technical reports presented to them. Two other factors came into play. The first was Cromwell's conversion of Senator Mark Hanna as an advocate of the Panama route, and the other was the Nicaragua volcano issue raised by Philippe Bunau-Varilla, who had a large interest in the French company that owned the unexploited panama canal. Orchestrating a timely and melodramatic campaign to point out the dangers of constructing a canal at Nicaragua, Bunau-Varilla convinced a majority of the Senate that volcanic activity in Nicaragua would threaten the ultimate success of any canal there. Based on very slimy and broadly assembled evidence, this last-stitch lobbying effort paid off for the Frenchman, as did Cromwell's conversion of Hanna, whose influential contribution to the debate over the canal in the Senate emphasized that Panama was the preferable route in the opinion of the engineers on the Walker Commission.

There were reputable engineers, though, who remained convinced that Nicaragua was the better route. One of the Commission's own engineers, Lewis H. Stimson, had emphasized the Walker report only for the sake of economy. While there was a strong case in favor of the superiority of Panama, the fact remains that there was no convincing case against the feasibility of a Nicaragua canal, aside from the suspicious volcanic issue. The then-unolved problem of disease in Panama, in fact, offered a stronger case against Panama than any of the arguments against the Nicaragua route. When the Senate voted for a canal at Panama, the two principal objections to locating the canal there, even from a technical standpoint, did not appear overwhelming.

The most critical issue, however, in the entire American effort to construct an isthmian canal was what would be built. Not in the long run the question of its location, but rather the very type of canal it was to be. The debate in the matter taking place from years after work on a lock canal had been authorized. When last burings taken on the Chagres in 1895 seemed to indicate that the proposed dam at Boquerón, the key element in the lock canal plan, could not be successfully built, John Wallace, the Chief Engineer at Panama, summarily announced the lock plan and convinced William Howard Taft, the Secretary of War, that a canal at sea level was the only feasible project. While excavation work continued in Panama, a newly constituted Isthmian Canal Commission set out to determine if the original plans for a lock canal would have to be abandoned. To aid them in their deliberations, an ad hoc Board of Engineers was appointed by President Roosevelt to study the problem and report to the Commission on its findings.

The eight Americans and five Europeans who served on the Board of Engineers conducted extensive hearings both in Washington and in Panama, subjecting to a review of the enormous body of technical data that has been amassed over the years on an isthmian canal. Besides rehashing what several prior commissioners had already considered in careful detail, the Board took testimony from Wallace and others who had had extensive personal experience working on both the French and the American projects.

Like nearly everyone associated with an isthmian canal — like nearly every participant in any great enterprise — they also brought the prejudices of their own past experiences with them. Unable to reconcile their various predilections, they consequently were unable to agree on the essential criteria for evaluating the lock canal and sea-level canal systems, and thus were unable to issue a report in which they could all concur. Eight members of the Board issued a majority report in favor of the sea-level project, with the five dissenting members elaborating their support for a lock canal in an extensive minority opinion published along with the Board's final report to the Isthmian Canal Commission. Then, ironically, on February 5, 1905, less than a month after the Board's report appeared, the Commission voted to reject the Board's plan in favor of a majority of its consulting engineers and to recommend to Congress that a lock canal be built by the United States. Finally, Panamanian officials were informed.

When the Senate was called upon to review the Commission's recommendations and the evidence presented by the consulting Board of Engineers, it was easy to understand why the debate on the canal should have been conducted almost at cross-purposes. The technical experts themselves had officially digressed. How were the politicians, who had to rely on the expert
testimony of others, to make sense of the alternatives before them and decide what kind of canal should be built? How had this honest but disturbing impasse been reached?

The confusion had arisen in large measure because of the canal actually conceived as a system, rather than as a series of locks. No dam across the Chagres, the issue that had provided a focal point for the entire discussion, was agreed upon by the European engineers on the consulting Board, though they unanimously rejected a lock canal. It was agreed that the Chagres could be safely dammed, but not at Gatun (where the canal was to be built), but at Gatun. Their principle objection to a lock canal did not involve creating the lake across the isthmus necessary to such a system, but rather to the reliance that would be placed upon the operation of the locks themselves. In the preceding nine years, the majority report occurred, there had been three occasions in which ships passing through the St. Marys Falls Canal at Sault Ste. Marie, the "Soo Canal," had crashed into the lock gates, and three accidents of the same sort on the Manchester Ship Canal in England. The danger of such accidents on a lock canal in Panama seemed to the majority of the Board to pose too great a risk for the United States to assume in the construction of what was likely to be one of the most heavily traveled and vitally important commercial links in the world. Believing that a sea-level canal would take about half the time, cost about $100,000,000 more to build, and be an inoperable, possibly dangerous lock system seemed to be the preferable recommendation for the "safer and permanent and safe ship canal" that "will endure for all time."

The minority report of the Board of Consulting Engineers countered the fears of the majority by stressing that no accidents occurred on the large locks of the type that had recently been installed at the Palosio lock on the Soo Canal would create the destruction of the locks by accidental collision virtuous possibility. The gates of the Lock of the Soo Canal had "struck three times and found less, or more," they pointed out, "but their continued to support the summit level. There was far greater danger, they believed, of an accidental shutting down the canal in the narrow excavated channel of a sea-level canal, whose sides would not move on slowly and under much control as would be the case in a lock canal. Grounds in the Suez Canal, the minority point out, had resulted in shut downs totaling nearly 300 days during the first eight months of 1889. In time of war, the risk of a ship being lost because of the canals level cause as great as the risk of damage being inflicted on the locks in a lock system.

The debate in the Senate and the House of Representatives over the safety of locks on ship canals. Senator Knox of Pennsylvania, whom McCullough supposed to have made the "major speech," and whose interest in a lock canal may have been influenced by the Pittsburgh steel companies who were likely to receive contracts for work on the proposed locks, spent 20 percent of his time and placed greatest emphasis on stressing the safety of the lock system, at a point which he reminded his colleagues had been agreed upon by both the majority and the minority of the consulting engineers. Tadising the same issue step further, he rebuked the majority of the engineers to their own detriment by pointing out that the sea-level canal also depended in the consideration of four dams to control the Chagres and other rivers. If any one of these dams should fail, the resulting catastrophe would be much more damaging to the sea-level canal than to the potential failure of the Gatun dam would be to the lock system.

Senators Dick of Ohio and Kittredge of South Dakota presented the majority speeches in favor of the sea-level route. Their arguments were clearly based on the assumption that Sen. Dick put it, that "there can be no question at all that other being equal, a sea-level canal is preferable to a lock canal." The import of these speeches was that other things were indeed more or less equal, and that the sea-level canal possessed a disproportionate advantage of being a final and completed enterprise. Nearly every supporter of a lock canal, added the Senator from Ohio, "regards such construction as a half-way measure, as merely the beginning of what is perhaps to be the changed to a sea-level canal." That being the case, the United States ought to go ahead and do things right in the first place. Both senators deplored the arguments of the lock canal supporters who sought to sacrifice the opportunity to build a great new enterprise and save a few years in construction time and a few hundred million dollars.

Only a few of the proponents of the lock canal system actually thought it as temporary. Among them the prominent was Blaine-Varilla, who had testified before the Board the previous autumn. His suggestion for later conversion to a sea-level canal was a throw-back to the days of the Atlantic Ocean. The new canal would be and operated by Panama, but construction would be financed largely by Japanese pears.

The canal would be built 10 miles west of the existing waterway and would cost about $8 billion at present prices. If construction is needed, the canal could be completed by 1904. But initial studies provided the estimates to be constructed in 1902. The Japanese companies recommended a canal to accommodate 500,000-ton ships. The Japanese recommended a waterway 90 miles long and about 100 feet deep.

(From the Cleveland Press)

New Panama Canal?

A new larger canal across Panama could be opened in 12 years if Japanese companies actually interested in the project agree to participate in the construction.

The new sea-level canal would run alongside the 60-year-old Colon-Dulce harbor. The canal would consist of a series of locks to pass ships between the Pacific and Atlantic oceans. The new canal would be owned and operated by Panama, but construction would be financed largely by Japanese companies.

The canal would be built 10 miles west of the existing waterway and would cost about $8 billion at present prices. If construction is started, the canal could be completed by 1904. But initial studies provided the estimates to be completed by 1902. The Japanese companies recommended a canal to accommodate 500,000-ton ships. The Japanese recommended a waterway 90 miles long and about 100 feet deep.

(From the Cleveland Press)
A HOLIDAY TO REMEMBER

Concrete Canal Boat

Reinforced concrete canal boat U.S. #117 was recently found by ACS Director and Chairman of the Canal Boat Hulks, Wrecks, and Remains Sub-Committee, Bill McKelvey, on the east bank of Neshaminy Creek about a mile up from the Delaware River in Croydon, Pa. The vessel was built in 1919 by the Structural Concrete Company at Ithaca, N.Y., and was operated by the New York Canal and Great Lakes Corporation. The official registry number is 107649; specifications were length 149.3', beam 21.1', net tons 289 and capacity 500 tons. In 1969, U.S.

The Handfords work their boat (the "Pisgah") through a stair-case lock on the French canals. (Photo by Michael Handford.)

by Michael Handford
Bristol, England

There is no doubt about it. The French canals are superb. They make an unusual and fascinating holiday for anyone interested in waterways. We shall certainly go back again and again.

There is no need to take the train alongside with British canals. In France the canals are invariably well maintained and have friendly keepers at most locks only too delighted to help the locks and supply you with fresh garden produce. The lack of a common language and our own lazy knowledge of French proved no problem as local people enjoyed practising their broken English and helping our faltering pronunciation. The other contrasts include the weather — the sun blazed down for almost the entire fortnight — and the excellent choice of inexpensive food. And what food! There are wines (at 80c a litre), cheeses and pates which make enjoyable picnics lunches on deck and even meals out in cafes and restaurants are both reasonable and appetising. We fed ourselves well and ate out two or three times for around $200 each a week.

The boat we hired was a well converted nine berth ex-French Army grain barge, the "Pisgah", which had a large and comfortable salon, dining room and kitchen, four double and one single berth, shower and toilet as well as a large deck space for sunbathing. At the height of the season it cost us less than $90 a person each week and that included the services of a friendly skipper with a weakness for bacon and eggs which he fried up in his own self contained cabin separate from the main accommodation. If hirers perform, the crew can provide breakfasts and probably lunches but these are as easy with French food it hardly seemed worthwhile to us. Nevertheless, with meals out in the evenings in reasonably priced local cafes, the boat can be used as a hotel boat if required.

Our journey of discovery began near Nevers on the Loire Lateral Canal with its regular glimpses of chateaux through the trees. From Blois we joined the secretive and beautiful Canal du Nivernais climbing through canals and woodlands to the summit at Baye where several large lakes fed the canal. The narrow summit pond is not usually wide enough for two boats to pass but with the end of commercial traffic there was no need to wait. We passed through a succession of limestone cuttings and short tunnels hidden away from the public gaze. Huge banks of blackberries along the summit provided irresistible.

English Canal Vacation

"Canalphone"
United Press International

LONDON — In case you get stuck on a British canal, pick up a telephone.

The British Waterway Board inaugurated Canalphone, a 24-hour-a-day information service seven years ago to provide details of events on Britain's inland waterway system and to warn of maintenance work, tunnel closures or canal-blocking accidents. The London number is 723-3465. (Contributed by George Wills)

How would you like to spend your vacation living in a lock house on the Oxford Canal in England? This is a possibility because ACS member Greg Klase and family have a house at Somerton Doop Lock (shown above) which they are willing to share as they only use it part-time. The house is furnished for sleeping for four, cooking facilities, two bikes, etc. They also have a 60-foot narrow boat which they are willing to share. Gregs an American who teaches at the NATO air base at Upper Heyford. If you are interested in making a private arrangement with the Klases, write to them at Box 4962, APO, New York, NY 10074.
A New Lock at Port Charlotte

During the past two years a new era of small lock construction has taken place at Port Charlotte, Florida. The General Development Corporation, one of the largest developers within the State of Florida, has constructed two new small locks adjacent to Charlotte Harbor.

The location of these two locks will play a very important part in the future expansion of GDC properties. Both locks are located on canals and waterways south and west of U.S. #41. Several of these canals and waterways are navigable for small craft and provide a means of transportation for residents whose property borders on either side of these waterways. Construction of these two locks serves a dual purpose: their location can control the water level in waterways for navigation as well as prevent landward from entering and polluting waterways. In case of a tropical storm, the excess water in canals and waterways can be released slowly by the lock, thus preventing damage to canal banks and property.

The Midway Lock was the first small lock built for the General Development Corp. (See the November 1979 issue of American Canals.) There is a remarkable difference between the South Gulf Cove Navigation Lock and the Midway Lock in construction details, size, and location. It was completed in October 1979 by the engineering firm of John A. Blume Associates of San Francisco, California. This time has had considerable experience in building small locks at different locations in California.

Location of lock is on the west shoreline of the Myakka River, North 40th Street. And adjacent more or less to Charlotte Harbor.

This lock (also known as 'Marina Lock') is of concrete & steel construction. It has two sets of steel gates that were to be of the midle type, but built to allow navigation for the sector type gates, therefore I am not sure which type was used. Both sets of gates are hydraulically operated in a single lift. Each one can be operated separately, or both together. All of the mechanism connected with the operation of this lock is handled from the Control Panel on the lock dock.

At both ends of the lock a ramp is provided which leads down to tidewater, or, canal level at the other end. Attached to the ramp are long, fixed, used for loading passengers from boats.

This lock is 30 feet long and 20 feet wide. It's total length including all structures at each end of the lock chamber would appear to be only 100 feet. Having explored this excellent lock on the 25th of January 1980 and admired the fine workmanship of its builders, I left me with but one thought in mind. Congratulations! For a job well done.

(Alfred Gould, ACS Director) 775 Marsh Ave, Port Myrs, Fl. 33905

South Gulf Cove Navigation Lock on the Myakka River, Port Charlotte, Florida, looking south, south east through the lock into the wide Connector Waterway. (Photo by Alfred Gould)

For the general information of ACS members, we have secured permission to publish the above chart, entitled 'Important Canals of the World', with its very interesting statistics of recent date. It is reproduced in its entirety from the World Book Encyclopedia, copyrighted 1980, by World Book Encyclopedia International Inc., Chicago, Illinois.

AMERICAN CANALS, NO 33 - May 1980
ANOTHER MINDERMAN “ORIGINAL”

This is another Chesapeake and Ohio Canal Scene by Maryland artist Earl Minderman, 5010 Jamestown Road, Bethesda, MD 20014. This painting depicts Lock 21 (Swains Lock) in the canal operating days. The lock house at this lock is longer than others on the canal. Swains Lock is now a popular canoeing spot near Washington, D.C. Canoes are for hire by the Swains, an old canal family.

TENN-TOM WATERWAY

Governors and Congressmen from southern states urged a House appropriations subcommittee not to let the controversial Tennessee-Tombigbee Waterway become a victim of budget cuts.

The Waterway known as the Tenn-Tom, is a 232-mile shipping channel that will connect the Tombigbee River in Alabama with the Tennessee River. The Tenn-Tom would open the Tennessee River basin in Tennessee and Kentucky — where shippers now must go by rail or roundabout on the Mississippi River — to direct barge access to the Gulf of Mexico. The waterway has been a favorite target of environmentalists, who argue it is economically unfeasible.

(Aldon Gould, ACS Director, from the Fort Myers News Press)

WHAT IS HAPPENING HERE?

Can anyone identify the location, the year, and tell us what the men are doing in this photograph? The boat seems to be the type used on the Ohio Canals.

LETTERS TO THE EDITOR

Two ACS members wrote in concerning the oldest canal in the United States. One candidate was the Middlesex Canal, the other the Cut River Canal, both in Massachusetts.

Bev Macart reminds us that the Middlesex Canal was the longest (27½ miles) single canal at the time of its “day of celebration” in 1806. It had aqueducts, 46 bridges, and 26 locks.

Hert Veney suggests that the Cut River Canal, a towpath canal from Plymouth Bay to Green Harbor affording an inland route to the north of Shrewsbury, some 17 miles from Plymouth, first cut in 1625 was the oldest “canal” without locks. In 1638 the General Court ordered that “the cut at Green’s Harbor for a boat passage shall be eighteen foot wide and six foot deep.” It probably closed for practical purposes in 1850.

English Canal Course

The Avoncroft Residential College (near Birmingham on the Worcester & Birmingham Canal) 22 July to 2 August is presenting a canal course entitled “The Midland Canals — In Town and Country.” The course includes lectures, films, and field trips, and two half-day boat trips. Cost includes board, meals, tuition, and visits: Shared room £70, single room £74, both plus tax. Details from Avoncroft College, Stone Heath, Bromsgrove, Worcs. B60 4JS, England.

TRENT-SEVERN WATERWAY

In the article on the Trent-Severn Waterway in the February issue of American Canals we neglected to say that the sluice was Herman Grone, Chief, Canals Engineering Division of the Engineering and Architecture Branch of the Canadian Department of Indian and Northern Affairs. The railway is operated by Parks Canada, in the Department of the Environment.

M. N. Byrne and Associates Ltd., Burlington, Ontario were the consulting engineers who designed the system and the builders were: General Contractor, Amiro Materials and Construction; Carriage, John T. Heppner, Ltd; Hydraulic System, Vicinex Ltd; and Wipro System. Canadian General Electric Co. Ltd.

CLASSIFIED ADS

Britain’s Lost Waterways (Ware) — These two books look at the canals and waterways during their heyday, with many photographs not previously published. Vol. 1: Inland Navigations, 96 pp., 142 Illustrations, $14.00. Vol. 2: Navigations to the Sea, 98 pp., 186 Illustrations, $14.00. Hardcover.

Champlain to the Chesapeake (McKelvey) — A journey via historic photographs of a trip from Lake Champlain to the Chesapeake Bay including the D&R Canal, the C&D Canal, and the Digby Swann Canal. 224 pp., over 475 photos, Hb., map, hardcovers, $25.00.

American Canal & Transportation Center, Box 310, Shepherdstown, W.Va. 25443.

Page Eight