ACS DIRECTORS SHARE IDEAS

ACS Directors get together at the Society of Industrial Archeology meeting in Harrisburg, May 8th, 1982. Left to right: Bill Trout, Art Swearson and Bill Shank. (Photo by Bob Vogel, President of SIA.)

Directors' Comments

"Ve" Verby, Cincinnati, Ohio — "As to the cause ACS should pursue I think you have been doing very well. There has certainly been an increase in interest in canals. I have thought a time or two that more space has been devoted to foreign canals than would please the purist of the membership."

Bill McKeever, Berkeley Huggins, New Jersey — "I would like to express my sincere feelings for the tremendous amount of work, dedication, energy, blood, sweat and tears that Tom, Bill, Charlie and yourself have done for ACS. Without your guys there would be no ACS! I have thought many times that we must cultivate and develop capable, able and willing workers to assure that ACS will continue. I pledge my continuing support. One other item — I do believe that the ACS Board should support the Center for Canal History and Technology at Hugh Moore Park, Easton, Pa."

Thomas Mink, Fort Wayne, Indiana — "Continue publishing AMERICAN CANALS. It is really good, and sets a standard of excellence which we can all follow. ACS should develop an aggressive policy for the entering of canal sites on the National Register of Historic Places, via the State Registers (which most States have)."

Encourage donations of interest books and publications to local schools and public libraries by individual members. Encourage and foster local and state organizations such as the CANAL SOCIETY OF INDIANA. CSI is, in effect, the child of ACS and the Canal Society of Ohio. Thanks, Miami!"

John Lamb, Lockport, Illinois — "My suggestion is that ACS should sponsor an annual symposium or conference of papers on canal history. I gather that this already is being done in conjunction with the Canal Museum at Easton."

Lou Cahill, St. Catharines, Canada — "I wish to acknowledge receipt of the February Anniversary issue of AMERICAN CANALS. Quite apart from your very generous recognition of myself, you are to be congratulated on this in-depth issue, which is certainly an excellent report and roundup on international canal affairs."

Roger Squires, Blackheath, England — "Could the ACS organize a listing of the Main Books of North American Waterways, to be available to students, etc., who might wish to complete projects on American waterway themes?"

"Should the ACS try to create a greater interest in restoration of some of the main features of the 'Old Canals'? Also, should it give more support to groups such as the Portage Canal Society who are trying to revitalize their new direct waterway?"

"Should the ACS try to stimulate more commercial operators to run the boats along navigable stretches of the old canals?"

"Should the ACS try to develop a greater co-ordinating role between the various Canal Societies, e.g., by producing a summary review of the main items of progress they have achieved during the year?"

BILL SHANK

"I am at a loss to determine how ACS should proceed. Although a letter was sent to the various state and regional canal groups asking for help, we are not, at this time, able to provide any funds to support any projects."

"Why should the ACS pay itself for the 1980s? Are the newly created range of regional state directors sufficient to meet future needs?"

Bill Moss, Fanwood, New Jersey — "My only thought, for the agenda now, would be to express support for the Canal Center at Easton."

(ACS has indicated its desire to assemble the Center for Canal History and Technology at Easton.)

President's Report

For the second time in the history of the American Canal Society, we attempted to have a meeting of the Board of Directors, scheduled during the national meeting of the Society for Industrial Archeology in Harrisburg, PA, May 8th, 1982. While only a few of us were able to attend (as shown in the photo) we had a fruitful discussion and received a number of interesting written comments from other ACS Directors, as published elsewhere in this issue.

In general, it was felt that ACS is doing a reasonably good job in meeting the objectives it set for itself ten years ago, but a little more informality in the handling of business might be in order. The Directors feel, now that we are no longer operating on a shoestring," that an annual Treasurer's Report should be more available to members who wish to see it and we should also call a Director's Meeting annually, getting all of them more involved in Society activities.

We discussed the possibility of raising our basic dues from $8 per year (unchanged since 1976) to $10 in 1983. Charlie Derre, who was unable to attend the meeting, reported that, as of April 30th, 1982, our checking account stood at $719.48 and savings at $5,149.33, for a total of $5,868.81. Total cost of printing and mailing our quarterly newsletter (and enclosures) has been running approximately $1,100 per issue, so we are in fair shape for the remainder of the calendar year. We also expect that our $1,000 request from the estate of Ted Sherman will shortly be turned over to him.

If any of your friends are interested in becoming members of the AMERICAN CANAL SOCIETY, I would suggest that you urge them to join now! As of the close of our Fiscal Year, October 1, 1982, we will probably take our single membership dues to $10 annually and make other adjustments to our dues structure.

BILLY SHANK

Page One

AMERICAN CANALS, NO. 41 - May 1982
UNION WEIGHLOCK IN 1970

Photo of the Union Canal Weighlock at the "Waterworks" west of Lebanon, PA, before its destruction. (Photo by Bill Etchberger, about 1970)

CLASSIFIED ADVERTISEMENTS

Lost Canalers - If you have been a member or still are a member of any canal society in the United States, Canada, or England and live in Southern California, especially in the Los Angeles area, please contact Bay Win Morant at 611 West Bonita, Sierra Madre, CA 91024 or call 213-395-7280. Possibly we can get together with other canalers who left their home states to live in California and who wish to form a canal society in the Los Angeles area.

PALINURUS "SPECIAL" TO ACS MEMBERS

Continental Waterways, operators of the "Palinurus" (shown above), a 16-passenger hotel boat, which cruises the Canal du Midi and the Canal Lateral à la Garonne in southern France, are this summer offering a special 20% discount to ACS members. The regular trip is six days long and includes meals daily and excursions to local points of interest along the route. Several of our members have taken this boat and recommend it. Inquiries may be directed to Alison Field, Promotions Manager for USA and Canada, Continental Waterways, 11 Beacon Street, Boston, MA 02108. Phone: (617) 227-3220.

NOTICE TO CANAL BOATMEN

The following Meach Chank Boats have been left in the Princeton Basin: The "Mechanic of Freehold," A. O. Cottrell, builder. Hotel No. 34 of New York Line, White Haven. Also, the forward box of a boat, name or number not known. The owner or owners are requested to take them away before Saturday, the 25th of June next, or they will be sold at Public Sale on that day to pay expenses.

(Published in WEST JERSEYMAN (Cumberland), June 1853, Courtesy Bill McKelvey)
ALEXANDRIA TIDELock EXCAVATION

Canal Archaeologist Tom Hahn at the upstream gate recess of the Tidlock emerging from the muck at the bottom of the lock.

The Alexandria Canal went 7 1/4 miles from Chantilly, District of Columbia to Alexandria, Virginia. The principal cargo carried was the coal from the fields west of Cumberland, Maryland. The coal was shipped via the Chospauke and Choch Canal to its connection with the Alexandria Canal at the Potomac Aqueduct.

Lock 2 and 4 are probably buried under modern buildings, but it is thought likely that Locks 1 and 3 were buried under the debris in two separate plots of land, available to excavation. Since Lock 1 (the Tidlock) was located at the Potomac River next to a wharf where the coal carried by canal boats was transferred to sailing vessels, the Tidlock and its basin and upstream (between the Tidlock and Lock 2) were considered to be the best place to attempt an archaeological dig. The locating of the lock would be the first step in the process to determine the practicality of restoring or stabilizing it for interpretation and further study. If the lock and its basin were found in a reasonable condition, they would be the only restorable property on the Alexandria waterfront. The lock and basin were built 1844-1846 and were last used in 1866.

Several months study preceded any attempt at excavation. Used in determining the location and construction details of the lock and the basin were Engineer Maxwell C. Fanning's field notebooks, historical, aerial, and modern topographical maps, historical correspondence, old newspapers, and other historical documentation, and ancient physical and modern map study.

The first phase of the excavation took place early in March when the downstream north lock gate recess was located right on target at the site of stones exposed in an earlier preliminary excavation, about two feet under the ground. Following excavations through May revealed most of the lock and the basin remains in good condition, except for most of the coping (that is, the upper course of stone of the lock) which had probably been removed for building purposes elsewhere. A deep excavation to the bottom of the lock (at about 16 feet) revealed that the wooden floor of the lock was intact, at least at the upstream gate recess, where the excavation took place. The depth of the excavation and the stream of water precluded further examination with the equipment in use. At that location parts of the wooden gates were found, including a rudder gate and its frame.

Further study and discussions will attempt to determine the feasibility of restoring or stabilizing the Tidlock and the basin remains.

(Capt. Tom Hahn is the Field Archaeologist for the project under the Alexandria Archaeological Research Center headed by Pam Cowley. Funding for the project is from a grant from the National Trust for Historic Preservation.)

Volunteers and Alexandria city employees, such as those working here at the upstream gate recess, were very helpful in the excavation of the site. The canal basin fits into the lock at mid-photo.

Modern machinery, such as this Bantam, was used to remove the overburden and for the basic excavation. Skilled operators can sensitively determine the type of material that they touch with their equipment.

NEW PANAMA CANAL?

TOKYO (AP) April 14, 1982 - The government is likely to join the United States and Panama in studying the feasibility of building a new Panama canal, but has not made a final decision, the Ministry of International Trade and Industry said.

The nationally circulated newspaper Asahi, quoting government sources, said Japanese participation on the committee would mean the country may help fund construction of a second canal.

An outline drafted by the Japan Chamber of Commerce and Industry calls for building a 61 mile, sea-level canal about nine miles west of the existing waterway.

MIAMI AND ERIE CANAL

Considerable damage was recently inflicted to the Miami and Erie Canal in the Providence Metro Park area, and a reassessment is expected to make its first trip 1 June, perhaps with a rebuilt steam engine.

[From Canal Society of Ohio Newsletter for April 1982]
CANAL LOCKS AND INCLINES

An inclined plane on the Morris Canal, showing a canal boat on a cradle, going over the "hump" into the upper canal level. Both boats and cradles were hinged in the center to permit smooth passage over the "hump." This boat was stopped, while repairs were made, before re-entering the water.

The following concludes an excerpt from an article in Engineering, Vol. 1, June 9, 1866. Engineering was a periodical published in England. The first section was published in American Canals Number 32.

When a great fall is to be surmounted, the series or flight of locks rendered necessary owing to the great disadvantage of requiring a considerable time for the passage of the boats through them. This, combined with their great expenditure of water, has led to the adoption, in some cases, of other means for raising and lowering the boats from one level to another. These contrivances may almost all be included under two heads, viz., perpendicular lifts and inclined planes. Of the former there are but few examples, whilst the latter have been adopted in many instances, both in this country and abroad. Perpendicular lifts for raising boats, 20 ft. long by 6 ft. 6 in. beam, and 2 ft. 3 in. draft, carrying about 8 tons of cargo, were erected on the Western Canal, near Tunon, by Mr. James Green. The greatest change of level to which these lifts were applied was 43 ft., and the expenditure of water was estimated to be about one-eighth the weight of the cargo, or, including leakage, one-fourth that weight. The application of inclined planes to canals is, like many other things, said to have been first carried out by the Chinese. However that may be, their first employment in the modern canal system is due to William Reynolds, who introduced them on the line of the Shropshire Canal in 1792. These inclines are four in number, and are named, respectively, the Hay, the Strechy, the Donnington Wood, and the Wombourne Inclines. The first two, which rise together 350 ft. east from the Severn at Crichedge, to the summit of the Shropshire Canal, the two others descend from the summit to the level of the Trench lock, the fall being 105 ft. The inclination at different parts of the inclines varies from 1 in 5 to 1 in 15. Each Incline has a double line of parallel "ways," those of the Wombourne Incline being formed of wrought-iron rails, and those of the others of cast-iron frame plates resting, upon longitudinal balks 10 in. by 6 in., these in turn being supported by cross sipes. The ways extend from below the water-level at the foot of each incline to above the water-level at its summit, and thence descend into the water in the upper bay. The cradles, which are strongly made, run upon four wheels placed within the frames, but they are also furnished with two other wheels fixed outside the frames, these last-mentioned wheels only coming into play when the cradle has surmounted the incline and is descending into the upper bay, when they come upon a pair of elevated rails, and keep the boat level as it is nearing the water. Each cradle is furnished at its lower part with an elevated frame or "carriage head," which is strengthened by a pair of back stays. These upper are connected with the hauling rope, which is of wire, by means of a chain bridle, and by this arrangement the rope is sufficiently alleviated to allow a boat to pass under it. The cradles cost, complete, about 90£ each.

From each cradle (of which there is one on each line of ways) the rope is led round a pulley, 6 ft. in diameter, placed over the upper bays, and thence down the inclines to a 6 ft. drum driven by a steam engine. The engines employed are from 15 to 20 horsepower, and, in addition to the drum just mentioned, they drive a "winding-out drum," the use of which will be explained directly. The manner in which the inclines are worked is as follows: Let us suppose that the two cradles are one in the upper bay and one at the foot of the incline, and that the boat which is to pass down is loaded, and that which is to pass up empty. The former is then placed on the upper and the latter upon the lower cradle, and the upper cradle is then hauled out of the top bay to the summit of the incline by means of a chain attached to the upper and connected with the winding-out drum. When the upper cradle has thus brought to the summit of the incline, it is held there by the man at the brake, and the winding-out chain is uncoupled from it and thrown on one side. The brake is then released, and the loaded boat and cradle descending the incline hauls up, by means of the wire rope connected with the winding drum, the empty boat with its cradle. Shortly before the latter reaches the summit of the incline the winding-out chain is attached to it, and the engine being disengaged from the "winding out" and connected with the "winding-up" drum, it is drawn over the summit, its descent into the upper bay being regulated by means of a brake applied to the winding-out shaft. If, instead of as above supposed, it is the ascending boat which is loaded, and the descending one empty, the extra power required to raise the former up the incline is supplied by the engine, which is then connected with the winding drum during the whole of the time. The boats worked up the inclines are 20 ft. long by 6 ft. 3 in. beam, and have a draught of 8 in. when empty, and 26 in. when fully loaded. The greatest length which can be passed up in an hour, the hands employed being an engine-man and boy at each summit, and a man to work the cradles on the cradles at the foot of each incline.

In the case of some canal inclines the boats, instead of resting directly upon the cradles, are carried in tanks or cabins in a floating state. The boats in the Chord Canal, erected by Mr. Sydney Hall, and that at the Blackhill locks of the Monkland Canal, constructed by Mr. Loudon belong to this class. On the Chord incline the cabins containing the boats are hauled up by water power: the engines, however, are only adopted for taking up boats of 8 tons burthen. The time occupied by each boat passing the incline is about ten minutes.

The volunteers of Blackhill locks of the Monkland Canal was constructed in 1850, in consequence of the suspension of the traffic which had been caused during the preceding year by the scarcity of water.

The difference of level at Blackhill is 56 ft., and before the construction of the incline the whole traffic was conducted through two sets of locks, each consisting of four double locks, and each double lock having a fall of 12 ft. each. The quantity of water expended by each boat in passing is 12,000 cubic feet, or about 350 tons of water. The cabins and carriages on the incline were constructed for the transfer of empty barges, the loaded boats still passing through the locks, and this has enabled the banks to be executed at a less cost than they otherwise would have been.

The incline consists of two lines of rails, each 2 ft. 7 in. gauge, the length of the incline being 1040 ft., and its inclination for the greater part of its length 1 in 15. On each line of rails runs a carriage, set higher from the rails at its lower than at its upper end, so as to support a level position a carriage or tank 76 ft. long by 13 ft. 4 in. wide by 2 ft. 9 in. deep. These carriages are made of wrought-iron plates, and their form in cross section is such that they readily fit the boats placed in them, and thus have to carry very little water. The carriages are arranged so that one ascends whilst the other descends, and vice versa, and each is connected by a 2 in. wire rope with one of the

(Cont'd on Page 5)

World highest lift locks at Petborough, Ontario, on the Trent-Severn Waterway. The two, opposing hydraulic cylinders raise and lower boats 85 feet from one level of the canal to another. (Photo by Tom Hahn)

AMERICAN CANALS, No. 41 - May 1902
pair of vertical drums, 16 ft. in diameter, placed at the head of the incline. These drums are supported on flanges, so that they may move in opposite directions; and they are connected with a pair of high-pressure engines of sufficient power, which make about twelve revolutions a minute to drive the latter at a surface speed of about two miles per hour. The caissons are provided with lifters, which are operated, and one caisson is kept being run down in water at the foot of the incline, a boat is placed in it, and the end of the incline panel raised, which raises the entire incline, the other caisson, which is filled with water, at the same time descending on the other line of rails; by this arrangement the one caisson nearly balances the other and little power has, consequently, to be exerted by the engine. On the arrival of the ascending caisson at the top, it is released, and its weight presses upon the first one, which is then released by a hydraulic arrangement, against the frame of the gates of the upper level; these gates, and the gates or doors at the upper end of the caisson, are then lifted, and the boat floated out into the upper reach. About ten minutes are occupied in taking a boat from the lower to the upper level, about five or six minutes being taken up by the actual ascent, two minutes for the opening of the gates for placing the caisson in the caisson, and two minutes for removing it from the caisson into the upper reach. As, however, a boat can be placed in one caisson while the other is in transit, a small quantity of water is removed from one, another, a boat can be passed up every eight minutes, and sixteen boats have been passed in ten hours. It is well understood that water is necessary to float it, weighs between 70 and 80 tons, but this weight can be reduced by taking up less water in the ascension than is capable of completely floating the boat contained in it.

To prevent accident in case of the rope breaking or the carriage being struck by the side of each rail, the carriages are provided with safety which engage in these. In the case of the ascending carriage, the rails are constantly working the teeth of their corresponding ratchets; but in the case of the descending carriage, this, of course, could not be allowed, and the rails are therefore raised from their ratchets, and are held in such a manner that they are released by the action of the descending carriage, fall into ratchets, and immediately upon the rope becoming broken.

When a boat is being transferred from one of the inclines to the steamer, a small quantity of water (about 50 cubic feet) is enclosed between the gate of the caisson and that of the incline; the gate of the caisson is opened, and the incline divided into two sections, each section having eight wheels furnished with flanges on each side of the rails. The boats are provided with strong chains, to which the two sections of the boat are secured by hawser, and are fitted with brakes by means of which any wheel may be locked fast as desired. From the upper end of each truck a wire rope, 2 in. in diameter, is led to the head of the incline, where it is passed half round a large sleeve pulley, and thence back down the incline to the winding drum, which is 12 ft. in diameter and from 8 to 12 ft. long, according to the length of the incline. This drum is furnished with a spiral groove of 3 in. pitch, and the ropes are wound on it in opposite directions, so that if one rope is wound on the other is unwound, and the carriages therefore move up and down the plane alternately. The ropes are supported along the centre of each line of rails by shotes placed at intervals. Those ropes, which are of English manufacture, each consists of thirty-six 1/4 in. wires, whilst coarse gauge in America by Mr. Roebling are formed in 343 small wires. In addition to the main ropes above mentioned, the lower ends of the carriages or each incline are connected by a lighter wire rope, which passes round a large sheave at the foot of the incline, and is used for hauling the trucks out of the water of the upper reach. The general inclination of the plane is 1 in 11, and they are each worked by a reaction waterwheels, the levers for regulating the supply of water and weighing the brakes being arranged in a high tower, from which the man in charge can see the whole plane. The dimensions of one of the wheels are as follows: It has four arms, the ends of which describe a circle 12 ft. in diameter. The openings for the efflux of the water are 15 in. high by 3½ in. wide, and the wheel being placed at such a distance down the plane that a head of water of 65 ft. is obtained, the discharge amounts to about 3000 cubic feet per minute. This gives about 225 horse power. The quantity of water which is required for working these reaction wheels is found to be less than halt of that which would be expanded in a series of locks of the same total lift. The working of one of these planes will be readily understood. The boat to be raised is floated upon the truck or cradle which is in the water at the foot of the incline, and secured to the steam-engine already mentioned. The winding machinery is then set to work, and the carriage hauled up, the crane, as it rises, drawing in means of the light wire rope connecting the lower end of the carriage; the other carriage out of the top reach and over the summit of the incline.

After the descending carriage is drawn over the summit, it of course acts as a balance-weight, and hence by the laws of mechanics the first boat is drawn up on the place which we have mentioned being set to work in 1846, was taken up in 3½ minutes, the weight of the boat being 70 tons. The planes on the Morris Canal were constructed under the direction of Messrs. Ace Whitney and W. H. Talcott, the chairman and engineer to the company, and the notes which we have here given concerning them were derived from information furnished to us by the last-mentioned gentleman some time ago. In concluding this article, we may remark that the question — whether locks or inclined planes can be most advantageously used for effecting a change of level in canals — is one which does not admit of a general answer. The advisability of adopting the one system or the other will depend, in each case, upon the supply of water which can be obtained, and upon the amount of traffic that it is to be worked; under any circumstances, however, it seems that the cost of working can be reduced by making either the locks or inclined planes on such a scale as to transfer a greater quantity of traffic from one to another than most of them do at present. This, however, would require a large expenditure upon construction, and it will in each case depend upon the amount of traffic to be worked whether such an expenditure ought or ought not to be made.
A profile of the canal-rail route which Dr. Ward followed on his journey between Philadelphia and Pittsburgh. (Drawing by Willard R. Rhoads, 1860)

The following are extracts from a Diary written by Isaac N. Ward, M.D. while traveling from Newark to Pittsburgh to attend the General Assembly of the Presbyterian Church.

May 12, 1836 - Took the boat at Elizabeth-town at eleven o'clock A.M., for Philadelphia. We were soon landed at Perth Amboy where we were carried by train cars to Bordentown. The face of the country, barren and uninteresting.

At three o'clock, P.M. took the boat at Bordentown, for Philadelphia. Sew but to admire the stagnant seat of Joseph Susquehanna near Bordentown, as creditable to the taste of its proprietor as it is admired by the passing traveler.

Arrived at the City of Brotherly Love at six o'clock. M. Secured our baggage in the morning line for Pittsburgh, and looked about for a resting place for the night. Having secured it at the United States Hotel until having taken a cup of tea, we walked out to admire the mask taste and Quaker-like simplicity of Philadelphia.

Our steamer (leaving Philadelphia) had in tow about twenty cars containing the passengers of three different lines now traveling a common road to Columbia. Our ride today was through the counties of Chester and Lancaster, two of the richest and most fertile, and in many respects, most inviting counties in Pennsylvania. The country on both sides of the road most of the way was studded with beautiful farms more inviting to the eye than any I had ever beheld.

At five o'clock, P.M., we descended a plain about the inclination of the landscape, and are now reaching the country of Lancaster, once flourishing, now withering and declining under the removal of the seat of Government to Harrisburg.

At Columbia we exchanged our cars with their painting, puffing, blowing, steam for the more quiet, though not more acceptable packet boat, "Dr. Lehman." Here we were stove so closely that if it be said we were accommodated, it must be added "on a pitch." Number of passengers, fifty or sixty. Two and three tables were set morning, noon and evening, one after the other in succession so that it seemed that the time was whiled away with eating, eating, eating. We passed Harrisburg about twelve at night, the hour when, by common consent, as many as were accommodated with both had been conveyed over to the care of Moravia so that I lost sight of the capital of Pennsylvania.

Saturday morning, the fourteenth - We have this morning left the banks of the noble Susquehanna along which we have finished our journey from Columbia to follow the Juniata by means of the canal bearing the same name in all its meandering form where it empties itself in the Susquehanna to where it takes its rise in the Allegheny Ridge.

The country along the Juniata is rough and much of it is wild and uncultivated. The canal from Columbia follows the water courses first along the Susquehanna then along the Juniata. The scenery much of the way, particularly along the Juniata, is mountainous, grand beyond all your conception, and so sublime that the traveler as he gazes and drinks in its views, feeling the boat drawing him away from it almost incomprehensible, is at equal stop. On the whole, one is disappointed traversing Pennsylvania by the way of the canal as it seems one continual range of mountains from Columbia to the foot of the Allegheny.

We arrived at Hollidaysburg at the termination of the canal at five o'clock in time to ascend the mountain in the first morning cars. (of the Portage Railroad) We entered the cars, probably a hundred in all, and were conveyed to the foot of the first plane, a distance of four miles by horse power. The ascent here is so great that the returning cars stand at great rapidity as is compatible with safety from their own gravity.

At six o'clock, Tuesday morning, we entered the cars at the foot of the plane. When everything was adjusted the signal was given by hoisting a red flag and in a moment the power was applied, and by means of the stationary engines, that the eye could just recognize in the distance at a seemingly great height, pouting, blowing and panting, and apparently as active as the war horse that at the sound of martial music, later for the bloody contest. After ascending plane after plane, five in succession, each one from one-half to three-quarters mile in length, you reach the top of the mountain where after partaking of that morning repast for which nature has now become impatient, you are permitted to look about you from this height of one thousand three hundred and sixty-five feet above the level of the surrounding country, and two thousand two hundred and ninety-three feet above the water, to breathe the pure air of heaven.

In our journey this morning we passed the most noble viaduct in the Union. (The Cenvaugh Viaduct) To sublimity of the prospect opening to the eye was deepened by the remembrance that ninety feet underneath you is the bed of the Cenvaugh River, spanned by this arch of eighty feet and upwards, and as you looked down the precipice beneath and cast the eye upward to reach the mountain top, your mind is overwhelmed with the vastness and the grandeur of the sight.

(Coast on Page 7)
As you emerge from this subterranean passage and from the deep shafts with which one feels himself surrounded with such a mass of life and animation, we are borne by a splendid vista in a minute's sail over and above the Cansingough River which we left as we entered the mountain to pursue its course for the space of three miles around. We then alternately follow it by its sides separated only by a narrow bank, now plunging into its waters through a side lock floating proudly on its bosom and now, as it were, in a spirit of exultation, leaving it far beneath us as we weed our way above its waters from side to side or bank to bank. Along the banks of this river, within the distance of thirty or forty miles, we discovered from sixty to ninety sail boats. The salt water is obtained by boring from three hundred to seven hundred feet below the surface. The water is raised in some cases by horse power but in most cases by steam and evaporated by a slow fire, great facilities for which are afforded in the large quantities of bituminous coal with which these mountains abound. On the side of the mountain, in the vicinity of each salt water, you may discover the mouth of a coal well which supplies fuel for the establishment, and near and anon your car would be tossed with the rattling of a rock descending the mountain loaded with coal, and in its descent carrying a returning car. In other cases you would see the coal, when brought to the edge of the pit, thrown into a trough and descending precipitately to the bottom of the mountain from whence it would be thrown into the furnace.

We followed the course of the Cansingough River till it assumed the name of Kittimunis where it entered into the Alleghany. We crossed the latter river at an elevation of forty feet above the surface of the water by six or seven arches of one hundred feet span each, and pursuing our way along its banks on the west side we passed over the village of Freeport where I observed about two thousand barrels of salt ready to be shipped to the southern market and at the dinner hour of Wednesday we were brought within sight of Pittsburgh. Again we crossed the river and planted our feet on the soil of that memorable city, (Pittsburgh) recognized by the atmosphere being charged with bituminous matter as to give to any other object its own distinctive hue.

Provided by C. O'Keefe Ward, M.D., ACS, 16 Dorset Tce, Des Moines, IA 50309, the great grandson of Dr. Isaac Ward.

AMERICAN CANALS, NO. 41 - May 1882
In the beginning of 1976 the outside work started. It had to be done as fast as possible, because the lock was allowed to be out of operation for one season only. The first thing was the cleaning of the lock. In 1613 the former owners published an order that people were not allowed to throw rubbish into the lock. If they did so, they should be punished! Nevertheless the Dutch did! When the lock was cleaned the workers found 125000 (!) kgs of rubbish matter. Among it, old bicycles, wrecks of small boats, and a lock gate which had been missing one day. Before the lock could be cleaned, two dams at each end of the lock were made. After that the lock was pumped dry, so the workers could go inside.

Much improvement was necessary during the restoration. The lock gates were renewed. There are only a few specialists in Holland to construct wooden gates. The technicians of Rijkswaterstaat called it cabinetmakers work because the gates have to close very precisely. Some parts of the lock had to be replaced by concrete construction. But because the original exterior had to be preserved, special bricks of an old type had to be fixed onto the portals. By looking very carefully at different bricklayers, a brick was found of the right measurements. It did not have the right original color, but the color was changed by using hydrochloric acid.

The old bridge over the lock had to be repaired too. Rijkswaterstaat made a plan for an electric swing-bridge in the old style. The railings of the old bridge could be used for the new one. The lanterns of the old lock were another problem. These too were of an old type, which was out of use for many years. But, in the province of Friesland a factory still had the shapes to cast the lanterns. There was joy among the restoration technicians!

Part after part the back of Muiden got back its old exterior. Not quite, however, because the operation of the locks was not as originally. New electricity is in use. The old gas lights had to be renewed and to close the doors have been replaced, but they are only pretty ornaments now.

(Continued on page 9)
We are indebted to Patrick Reynolds for permission to reproduce his "Canal Pirates," one of a series of syndicated drawings being published in various Pennsylvania newspapers. He has done hundreds of these drawings and published several books under the "Pennsylvania Profiles" title.

(Cont'd from Page 8)

In August 1976, the old lock was reopened by the director-general of Rijkswaterstaat. For this event he used an old motor-sailkipper of Rijkswaterstaat from 1903! Bands and regional organisations assisted the party, and a special commemorative was struck.

Now the 'big soalock of Muiden' is one of the oldest places in Muiden. Many yachts pass it every summer season, and many people stop off to take photographs of the lock of 1674.

(Mr. Van Lith is editor of the house journal of the Netherlands Ministry of Transport and Waterworks. Address: Oosterfietstraat 11, Voorburg (ZH), Holland.)

BRAZILIAN WATERWAYS

The Sobradinho Lock near Juazeiro, Bahia, on the Sao Francisco in Brazil was dedicated recently. The lock is in a hydro plant and measures 120m x 17m with a maximum lift of 53.5m. The President of the Republic was present for the dedication. The first boat to officially go through the lock was the sternwheeler steamer SÃO FRANCISCO built about 1910. The boat and her sister ships have been in regular service on the Sao Francsico between Juazeiro and Piraqra, Minas Gerais. The boat was built and supplied in knocked down or kit form by the old James Ross & Sons Company in Pittsburgh.

The hydro project on the Tocantins River at Tucuruí, Para, is proceeding. This will become the third largest hydro project in the world. Two locks, 200m x 33.9m, each with a 34.5m lift, will be at the ends of a 5 or 7km canal bypassing the dam. This dam will back water up to Marabá. Other hydro dams with locks are projected for the Araguaja. In the near future the Brazilians plan to interconnect the Araguaja and the Parana via their respective tributaries, the Doce River and the Verde Rivers. They are not afraid to think big.

(Submitted by Ross Rogers, J.L., Marine Surveyor, ACS, P.O. Box 148, Sewickley, PA 15143. Ross has promised to send photos of the projects when received from friends in Brazil.)

Muiden Lock, with the swing bridge open in the foreground. (Photo by H. A. Van Lith.)
TOUR OF FLORIDA'S CANALS

St. Lucie Lock, looking west. Tidewater is directly behind the photographer. Boats in the lock are headed for Lake Okeechobee. (Photo by Alden Gould.)

By Dr. W. E. Trout & Alden W. Gould

We made plans to cover the entire region of canals south of Fort Myers and eastward sections of the state, including Lake Okeechobee. Then northwest to Fort Charlotte to visit two small locks that were built for the General Development Corporation.

First Day: We left Fort Myers, Florida on March 29, 1932. Our first stop was at Clewiston, where a new lock was constructed at the Hooper Dike. This is a navigation lock 50 x 60 ft. in the chamber, completed in January 1930. Leaving here we took route 277 to Lake Harbor where the Miami Canal is located at its north end, and, adjacent to the Hooper Dike which was built in the 1900's. There is one concrete lock here with two wooden gates. This structure is in excellent condition today, and can be walked on full length. It has a large plaque at the gate, entrance to the property which is fenced in, and also the lockkeepers house with high stalls supporting the structure. We were greatly pleased that action has been started in the right direction for a very attractive State Park with a beautiful view of the Miami Canal looking south.

The upper part of the Miami Canal was begun by Diston in 1902 in an attempt to link Lake Okeechobee to Shark Valley and Florida Bay. He followed the stream-bed of the Pintza River southward, past this point and less than 12 miles encountered hard rock that the dredge could not handle, where he had to abandon the project. Construction of the canal was finished later, and the lock and lockkeepers house were completed in 1915.

Leaving this site our next stop was on route 277 again going south to Miami and the Miami Canal. We were following the route taken by the Broward County Harcic Commision on New River Dr. at the L. Clayton Historic Buildings, headquarters for all activities with regard to the hatchery and fishery works and for drainage purposes. We spent about two hours looking over many of their photos and maps of the region including the canals and their preservation activities.

In leaving this location, we picked up route 277 again going south to Miami and the Miami Canal. We were following the route taken by the Broward County Harcic Commision on New River Dr. at the L. Clayton Historic Buildings, headquarters for all activities with regard to the hatchery and fishery works and for drainage purposes. We spent about two hours looking over many of their photos and maps of the region including the canals and their preservation activities.

Leaving Fort Lauderdale, there is ample parking. Picnic tables, restroom facilities will be provided later when the small lockkeepers house has been renovated. This lock is in an excellent condition today, and more work is yet to be done on its wooden gates, plus a few other projects yet considered before this site is due for its Grand Opening. This lock was completed structurally in 1912, completed fully in 1913. This Historical Lock is 130 x 25 ft. in its chambers.

The locks of the canals are placed along the route to allow the drainage of the vast Everglades during the 1930's. In that era, man sought a waterway to drain the Everglades in order to prevent the flooding of the Everglades area. There are a few districts still in operation and used for navigation by steamboats and water traffic.

Second Day Tour: Bill and I decided to locate the south New River Canal and its one lock. We had no trouble at all in locating it. There is one lock here in excellent condition today, less its wooden gates. There are a few districts still in operation and used for navigation by steamboats and water traffic.

Leaving the South New River Canal now, Bill and I drove over to the new location of the Locks on July 4, 1906 at Fort Lauderdale. This vast enterprise extended through various sections of the state. The main canals were for drainage, but also used for navigation by steamboats and water traffic.

In leaving this location, we picked up route 277 again going south to Miami and the Miami Canal. We were following the route taken by the Broward County Harcic Commision on New River Dr. at the L. Clayton Historic Buildings, headquarters for all activities with regard to the hatchery and fishery works and for drainage purposes. We spent about two hours looking over many of their photos and maps of the region including the canals and their preservation activities.

Leaving Deerfield, we next stopped at West Palm Beach. Located here is the West Palm Beach Canals which is very interesting to visit. This lock site is the outfall of the canals into salt water. This lock is 130 x 25 ft. in its chamber. The lower gate appears to be of concrete today, but in its early years it was constructed of wood. The upper gates at the canal level also have the recess for wooden gates, but not used today. Near the lock is a large structure across the canal which is used as a warehouse for boats and water transportation.

Another lock is located at the lower reaches of the Hillsboro Canals. A large lock 20 ft. x 200 ft. with a head gate and a waterway to prevent flooding in the Everglades. This lock was in operation in 1905 for drainage purposes. This lock was built in 1905 for drainage purposes. This lock was in operation in 1905 for drainage purposes.

Leaving Deerfield, we next stopped at West Palm Beach. Located here is the West Palm Beach Canals which is very interesting to visit. This lock site is the outfall of the canals into salt water. This lock is 130 x 25 ft. in its chamber. The lower gate appears to be of concrete today, but in its early years it was constructed of wood. The upper gates at the canal level also have the recess for wooden gates, but not used today. Near the lock is a large structure across the canal which is used as a warehouse for boats and water transportation.

Another lock is located at the lower reaches of the Hillsboro Canals. A large lock 20 ft. x 200 ft. with a head gate and a waterway to prevent flooding in the Everglades. This lock was in operation in 1905 for drainage purposes. This lock was built in 1905 for drainage purposes. This lock was in operation in 1905 for drainage purposes.

Leaving Deerfield, we next stopped at West Palm Beach. Located here is the West Palm Beach Canals which is very interesting to visit. This lock site is the outfall of the canals into salt water. This lock is 130 x 25 ft. in its chamber. The lower gate appears to be of concrete today, but in its early years it was constructed of wood. The upper gates at the canal level also have the recess for wooden gates, but not used today. Near the lock is a large structure across the canal which is used as a warehouse for boats and water transportation.

Another lock is located at the lower reaches of the Hillsboro Canals. A large lock 20 ft. x 200 ft. with a head gate and a waterway to prevent flooding in the Everglades. This lock was in operation in 1905 for drainage purposes. This lock was built in 1905 for drainage purposes. This lock was in operation in 1905 for drainage purposes.

Leaving Deerfield, we next stopped at West Palm Beach. Located here is the West Palm Beach Canals which is very interesting to visit. This lock site is the outfall of the canals into salt water. This lock is 130 x 25 ft. in its chamber. The lower gate appears to be of concrete today, but in its early years it was constructed of wood. The upper gates at the canal level also have the recess for wooden gates, but not used today. Near the lock is a large structure across the canal which is used as a warehouse for boats and water transportation.

Another lock is located at the lower reaches of the Hillsboro Canals. A large lock 20 ft. x 200 ft. with a head gate and a waterway to prevent flooding in the Everglades. This lock was in operation in 1905 for drainage purposes. This lock was built in 1905 for drainage purposes. This lock was in operation in 1905 for drainage purposes.

Leaving Deerfield, we next stopped at West Palm Beach. Located here is the West Palm Beach Canals which is very interesting to visit. This lock site is the outfall of the canals into salt water. This lock is 130 x 25 ft. in its chamber. The lower gate appears to be of concrete today, but in its early years it was constructed of wood. The upper gates at the canal level also have the recess for wooden gates, but not used today. Near the lock is a large structure across the canal which is used as a warehouse for boats and water transportation.

Another lock is located at the lower reaches of the Hillsboro Canals. A large lock 20 ft. x 200 ft. with a head gate and a waterway to prevent flooding in the Everglades. This lock was in operation in 1905 for drainage purposes. This lock was built in 1905 for drainage purposes. This lock was in operation in 1905 for drainage purposes.

Leaving Deerfield, we next stopped at West Palm Beach. Located here is the West Palm Beach Canals which is very interesting to visit. This lock site is the outfall of the canals into salt water. This lock is 130 x 25 ft. in its chamber. The lower gate appears to be of concrete today, but in its early years it was constructed of wood. The upper gates at the canal level also have the recess for wooden gates, but not used today. Near the lock is a large structure across the canal which is used as a warehouse for boats and water transportation.

Another lock is located at the lower reaches of the Hillsboro Canals. A large lock 20 ft. x 200 ft. with a head gate and a waterway to prevent flooding in the Everglades. This lock was in operation in 1905 for drainage purposes. This lock was built in 1905 for drainage purposes. This lock was in operation in 1905 for drainage purposes.
of good size. I talked with the Locktender, explained our mission, who we were representing, etc. He then gave us the go ahead to look at anything of importance to us. We took him at his word and spent about two hours at this site. He also enlightened us on local information, maps and old history dating back to the Old Original Lock which lies buried in its original site today. It has been filled in for 30 years or more, but is still on the south full length of the lock, with a set of gates at its entrance. This lock was 180 x 30 ft. The original navigation lock rooms, a picnic area, and tables.

Leaving here we followed the canal on route #76 to route #441, the site of the new Port Mayaca Lock at Lake Okeechobee. Before we visited this lock Bill wanted to view the lake at Canal Point.

When we arrived at Canal Point we walked up to the top of the Hoover Dike to view this 740 sq. mile Lake Okeechobee. Bill remarked, it was just like looking at the ocean. While we were at Canal Point we visited the upper lock of the West Palm Beach Canal. This lock 130 x 25 feet still has its wood gates, and is in very good condition today. From the south end of the lock one gets a beautiful view of the canal for many miles. This canal served for drainage, but in the early 1900's it was also a navigation waterway for steamboats of good size and length. The West Palm Beach Canal was long, deep, and short of all main line canals, and also the last main line canal constructed.

We then drove back to the Port Mayaca Lock. This new lock was completed in 1977. It is 100 x 56 ft. has six gates, also 4 spillway vertical lift gates 29 ft. wide by 13 ft. high, manually operated. This lock site is rather unusual, due to building of a half moon shaped dike (like the Hoover Dike) but in the Lake. But it ends join the Old Hoover Dike. Therefore, the large lock was constructed in the middle between both wing type dikes. Public facilities here are now completed. In leaving this site we drove on route #441 to the northern end of the Lake to see the Taylor Creek Lock set into the Hoover Dike. This was formerly a hurricane gate, but was rebuilt into a navigation lock.

There is what is known as a Film Canal around outside of Hoover Dike, which passes directly in front of the Taylor Creek Lock. Leaving here we walked on route #76 on the west side of the lock that connects Lake Okeechobee with the Colorado Atcholove River, also known as the "Okeechobee Waterway." This lock is 260 ft. wide. The grounds are well kept up by the Corps of Engineers. Campground and picnic areas are provided, as well as restrooms, and parking areas, etc. A beautiful site to visit.

And I had quite a nice visit with the locktender, Mr. Saxon. He is also a good share of their duty time, therefore they welcome conversation with visitors. We then left this site and took a short drive down to the location of the Old Seved off Cypress Tree Lake. In the very early days of river navigation to the Lake, or River to river navigation there were no markers of any kind (this was before the Hoover Dike was built), to guide the Skippers into the canal. This tree was a landmark they used for many years. It still stands today, just as it was in those early years. At its base is a Historical Marker. Also one wall of a former lock site, about 100 ft. from the tree.

We continued on route #28 on the north side of the "Okeechobee Waterway." We made two more stops on our tour, the Onto Lock first and the Frankin Lock later. The Onto Lock is located on the Caloosahatchee River (Okeechobee Waterway). There is a camping area for travel trailers. Boats enter the lock at high water, then drop about 8 ft. to the river level. The lock is 250 x 60 ft. and is operated by the Corps of Engineers.

Our last stop was at the Franklin Lock at Okeechobee where we topped with work provided by the Corps of Engineers for public use. There is a rather elaborate picnic area with tables and shelters, nice restrooms, water supply, grills for cooking and small boat ramps, indeed a very nice park in every way. The spillway at the lock is on this side of the river. In order to really see the entire lock and walk upon it should be done from the route #60 entrance. This lock is 400 x 56 ft. the same size as the Port Mayaca Lock we visited earlier. This is the last of the locks on the Okeechobee Waterway. It is a very important structure since it controls the fresh water level at its coast end and prevents salt water from entering at its west end. Water for public use is taken from this river, treated and then pumped to Port Myers and many other districts.

Fourth Day Tour. On April 1st 1982 we visited the two small locks built for the General Development Corporation at Port Charlotte, Florida.

We both had a swell time on our tour. Both of us enjoyed the many sites we visited and the people we talked with regarding preservation and restoration of our former canals and waterways that still remain in good or excellent condition today within the State of Florida. The state of Florida has over 433 miles of canals.

A cruise boat in the St. Lucie Lock, headed for Lake Okeechobee (looking east). This lock is 250 feet long, by 45 feet wide. The old, original lock is to the left of this view.

CLOSING OF FOX RIVER LOCKS

As one of the least economy cuts, the Corps of Engineers announced that the Fox River in Wisconsin between Neenah and DePere is one of the nation's many waterways on which it is going to reduce maintenance. This would mean the end to operation of the locks which last year recorded a record number of transits between Lake Winnebago and Green Bay. Some fear that the waterway should be kept open in accordance with the Northwest Ordinance of 1787, which called for all navigable tributaries of the Mississippi and St. Lawrence Rivers to be "highways and forever free." The Fox River Waterway was an important factor in the early development of the State of Wisconsin and has remained an asset throughout the years.

Frederica Kleist wrote in February: "The Portage Canal has resolved all the problems of how to maintain the waterway. The Fox River is at the east end of the canal offers an extended canoe trip into a rural setting which abounds with wildlife." Included with the Kleist letter was a copy of letters from the St. Paul District, Corps of Engineers stating that the Corps would "determine ways to make the Portage Canal more attractive, primarily at the Wisconsin River Lock."

In March, Henry Abraham wrote: "In 1951, Portage had an incident which became memorable and hopefully will not be repeated. The locks at Portage Wisconsin on the Portage Canal were closed, one wrecked, the other bulldozed in to form an earthen dam. This was done without notice, spoiling the part of the Fox River Waterway. The reason given was a lack of funds. If this procedure is allowed again, what is to become of the canals and locks? In fact, the whole water system. Would it not be cheaper to keep them in operation?" Ms. Kleist asks that ACS members write to their Congressmen to help, and to Wisconsin Senators Robert Kasten and William Proxmire, and to Wisconsin Representative Robert Kastenmeier.

[Henry Abraham, ACS, is President of the Portage Canal Society. Frederica Kleist, ACS, is the Corresponding Secretary. Additional information for the article came from the Fox River Daily Register.]
ACS PRESIDENT SPEAKS AT DEDICATION

ACS President Bill Shank (center) was the keynote speaker at the June 8th dedication of the restored Susquehanna Canal Museum of Havre de Grace, Maryland. Left to right: Ellsworth B. Shank, Museum Board Chairman; Charles D. Montgomery, Mayor of Havre de Grace; President Shank; William S. James, Treasurer of the State of Maryland; and J. Dudley Digges, Chairman of the Maryland Heritage Commission. The Museum is the original lock-house building at the outlet lock of the Susquehanna and Tidewater Canal.

Newark’s Subway

On the Northeast Corridor, at Newark, New Jersey, is a delightful ride on the continent’s best kept transit secret, the Newark City Subway.

Part of the 4.3-mile line is downtown Newark, but most of it is underground, cutting the former bed of the Morris Canal, which once connected Newark with the Delaware Valley. Construction of the Lackawanna Railroad made the canal obsolete.

In 1929, a century after the first section opened, but long after commercial use had ceased, the canal was drained. A section of it was converted to a trolley line. The line opened in 1935; three years later it became Newark’s only remaining trolley.

You’ll need $1.20 in exact change (60¢ twice) and about 25 minutes for a round trip.

Follow the “City Subway” sign to the base of the Newark Amtrak station, where the subway begins. It’s also where the New Jersey Transit’s 32-year-old trolleys are stored and serviced.

From the Amtrak station the line goes west under the downtown. Wall tiles in the station depict canal builders in the heroic fashion of the late 1820s.

Emerging from the subway, the line takes a northerly course. It bridges the Lackawanna River to the old local commuter line, and in turn is bridged by Interstate 280.

For the rest of the trip, the line follows the old bed between Branch Brook Park on the right and Newark’s predominantly Italian North Ward on the left.

[Submitted by Gary E. Holland from Winter 1981-1982 issue of transit, trolley, bus & barge]

LOCK “SHUT-DOWN” AT 3-RIVERS??

The following UPI release hit newspapers in Pennsylvania February 21, 1982. Western Pennsylvania’s Congressional delegation has asked for a meeting with Poagam administration and U.S. Army Corps of Engineers officials to discuss the impact of proposed budget cuts on lock and dam operations in the region.

Rep. Joseph Gavdos has enlisted six other congressmen in requesting the meeting with Poagam and Corps officials.

Gavdos said the delegation is worried about prospects to cut the 1983 budget so much as “to effectively throttle commercial river traffic on the Monongahela and Allegheny Rivers.”

The proposal would cut Allegheny River facility funding from $23.3 million to $20.0 million.

“What that means,” Gavdos said, “is that all locks and dams on the Allegheny will be closed and kept in caretaker status. They might just be preserved as ‘scenic’ places.”

The congressmen, joined by Sen. H. John Heinz, sent a letter to administration officials:

“We believe a way can be found to deal with this unique and economically dangerous situation if all parties involved can meet face-to-face.”

In this same connection, J. Stuart Ehrler, P.E., President of the Pittsburgh Chapter of the Pennsylvania Society of Professional Engineers, sent a letter to H. John Heinz III dated April 22, 1982, as follows:

“The recent decision by the United States Army Corps of Engineers District Office to curtail the hours of operation of four locks on the Allegheny River and three locks on the Monongahela River is more ‘economic bad news’ for western Pennsylvania.

“Many are concerned that this is just the first step in a series of steps to curtail the operation of the locks on the rivers of this region.

“The immediate resolution adopted by the Pennsylvania Society of Professional Engineers Pittsburgh Chapter, is our statement of opposition to the lock curtailments proposed by the Army Corps of Engineers for 1983 and the President in his proposed budget for this Federal Fiscal Year.”

Page Twelve

ACS Activities in United Kingdom

Dr. Roger Squires, our ACS Director for the United Kingdom, sends the following report on activities there:

The ACS UK Section holds two meetings a year, in the form of open lectures on North American Waterways, at the Sutton College of Liberal Arts, SUTTON BURY. The aim of these is two-fold. Firstly, to keep the "Pipe Flying" and provide regular series of lectures on American Waterway themes. Secondly, to provide a platform on which visiting speakers can talk about the American Waterways. Last Autumn Bov Morant gave an illustrated talk on the Commercial Waterways and Leisure Waterways of North America at a one-day Seminar, and earlier this year I gave a talk and slide show on the RIDGE CANAL to commemorate the 150th Anniversary of its opening. In the Autumn (24th November 1982) I shall be giving a presentation on the WYLAND CANAL and our Canadian Director Louis Cahill is providing me with some slides to supplement my own stocks. Further lectures will be organized in 1983.

One function of the ACS UK Section is to provide a contact point for visitors to England so that they may get the most out of their stay. Last year a two week tour was organized, which included a visit to the IWA National Rally at Leeds where the ACS members present were guests of honor. The IWA Chairman, John Haap, and President Sir Geoffrey DeFreys, joined together to link the IWA and the ACS by the exchange of tokens. The ACS were presented with a burgee and this was brought back to America by ACS member Albert Calley and subsequently presented to ACS President Bill Shank. Such an action really identifies the aims of the UK Section, in helping the enthusiasts to unite.

The Year 1932 is Maritime Heritage Year in England. To help make ACS and Canal Society members more aware of the range of waterway facilities that can so easily be found in England, the ACS UK Director prepared a Slide/Tape package which is now available for members (to use).

The UK Section is a small one, but it offers one of the vital links in ACS coverage of the Waterway scene. Its Director hopes that it provides a worthy range of facilities to forward the cause of the Federal Year.”

CANAL CALENDAR

June 27, 1982 - Lehigh Canal Festival at Moore Park, Easton, PA.

July 2-5, 1982 - Steamship Historical Society meeting and tours on the S.S. Savannah, Gravenhurst, Ontario, Canada.

July 8, 1982 - "Life on the Canals," Jim Lee, Morris Canal Author and Historian, Canal Museum, Hugh Moore Park, 3:00 p.m.

July 8-10, 1982 - Canal Days, Canal Fulton, Ohio.

July 10, 1982 - Harlan River Festival, New Brunswick, NJ.

July 31, 1982 - A day long tour of the Oswego Canal on the Ember I, sponsored by the Canal Museum, Syracuse, NY.

July 31 - August 1, 1982 - Canal Days in Port Colborne, Ontario.

August 20-22, 1982 - Cenesthon (Ohio) Canal Festival, Cenesthon and Reosmo Village, OH.

August 28, 1982 - Canal Day in Warton, NJ, Slide Lecture and guided tour of the Morris Canal, near Lock 2, John O’Toole.

September 4-6, 1982 - Labor Day Weekend - Pegus Heritage Festival, Johnston Farm, Piqua, Ohio.

September 8-10, 1982 - Sandy and Beaver Canal Days, Maysville, Ohio.

October 8-10, 1982 - Canal Society of Ohio Fall Tour, Milan Canal and environs.

AMERICAN CANALS, NO. 41 - May 1982