PRESIDENT'S LETTER NO. 6

Greetings! Those who remember the contents of my last president's letter may be interested to know that the Ohio Department of Transportation has replaced the old stone Walhonding Canal culvert (that had been acting as a road bridge for State Highway #36) with a modern concrete culvert, capped with stone from the original culvert to, I guess, make it "look authentic".

Does anyone agree with me that cosmetically reworked historic structural artifacts aren't worth the concrete that's in them? I'd like to hear some comments—both pro and con.

I've had a letter or two from some minor politicians in the O.D.T. saying, in effect, that "what the O.D.T. renders no man can put asunder", but no offer to contact our representatives for future planning studies. Still, I'm hopeful that something along those lines can be accomplished.

Still speaking of things going on in Ohio (Hey, send me some comments about what is going on in YOUR state and I'll share them) the Ohio Department of Natural Resources has had the responsibility for maintaining the records and survey plats for the state's canal systems for many, many years. They still administer those miles of canal that are currently being used by industry and municipalities as a water source.

This office has always been quite cooperative with the canal history student, engineer, or buff. They have given us pretty much free access (of course with an appointment) to their offices and vast "hard copy" survey plat files.

They continue to cooperate with various canal-related organizations and are plunging into the 21st century with a bang. I quote a few paragraphs from a recent letter.

LOCK SECRETS UNLOCKED

THE OCCULT SIDE OF THE WALL

Lock walls are normally seen from inside the lock. We assume that the wall has another side, but don't expect to see it, since it is underground. For those insatiable canal fanatics who cannot rest as long as any stone remains unturned, we here reveal the other side of the wall. This is the south side of the south wall of Lock 14 on the Illinois and Michigan Canal, at LaSalle, Illinois. It has been temporarily exposed during repairs to the lock.

Thanks to Gerald Hulslander, of Marseilles, Illinois, for this unusual photograph.

At the present time we are entering into a contract to have the original canal plats scanned to enable them to be accessed on the web. This is the first step in the creation of GIS system for the canals. This system would be used by this office for property management purposes in inventorying the remaining canal lands and the management of them. Hopefully this system will also be used to link historic data and the GIS will someday be a valuable tool in the study and research of the canals of Ohio.

Just the other day we had a meeting with representatives from the Ohio Historic Preservation Office, to discuss the use of our base information and their adding of additional layers to our system. Hopefully this idea will catch on and other groups will add to this system, possibly the American Canal Society.

The Canal Program has a Web page, http://www.dnr.state.oh.us/odnr/water/canals.html. On this page are links to canal information, including the "CANAL LANDS REAL ESTATE POLICY" which sums up the duties of this office.

I'd like to hear of similar web pages for other state and local canal systems. Perhaps the A.C.S. can act as a catalyst to get all these groups and web pages together, or at least get their originsators some publicity.

Now I think I'll step down off this soap box again and say, . . . Till next time, HEADWAY TO YOU!!

[Signature]

Perry K. Woods
Gerald R. Bastoni 1951–1998

Gerry Bastoni died suddenly, unexpectedly, and at a tragically early age, on December 7th, 1998. The cause of death was a massive heart attack. He leaves a widow, the sculptor and artist Barbara Kozero Bastoni, and three young children, Jacob, Cara, and Ellen.

Often described as a renaissance man, he was a musician, a coach, a curator of art museums, and a historian. He is best known to readers of this journal, however, as executive director of the Delaware and Lehigh Canal National Heritage Corridor Commission. This is the third national heritage corridor in the United States, and extends almost 200 miles from Bristol to Wilkes-Barre in eastern Pennsylvania. Perhaps its most notable feature is a 190-mile trail along the towpaths and rail beds of the valley.

As executive director, he was primarily responsible both for raising and for administering the commission’s $150 million budget. The combination of enthusiasm, dedication, knowledge, and skill with which he met these challenges is rare. It was part of his genius, however, to cultivate these qualities in others and to build self-sustaining organizations. Though he will be sorely missed, his work will live.

--
The evening of September 13, 1998 was the scene of the formal dedication of Piqua, Ohio's newest park, Lock Nine Park. The dedication ceremony began with speeches describing the efforts to create this park and the history of the Lock Nine site. A highlight of the event was the presentation of commemorative miniature shovels to the 90 middle school and high school students who had participated in the archaeological dig to uncover the lock in February.

An historic moment in the ceremony was the pouring of water taken from the Miami & Erie Canal upon the lock walls, which had been revealed for the first time in 80 years. Fireworks lit up the night sky, fired from the railroad trestle adjacent to the lock site. The words "LOCK NINE" were spelled out in fireworks as the grand finale.

Named for its focal point of interest, Lock Nine Park is located at the site of the ninth lock south of the summit on the Miami & Erie Canal. The park's History Wall interprets the impact of transportation on the city of Piqua and the illustrations show Indian canoes, flat-boats, canal boats, and rail travel. The park's amenities include picnic sites and areas to view the Great Miami River, the uncovered Lock 9, and the nearby rail system.

Commemorative shovel memento—six inches long

COMMERCIAL CANALS, XXVIII-1 Winter 1999
AWESOME DIGGING FEAT COMES TO LIFE AT CANAL MUSEUM

by Mary Maynard Drake

[This article was first published in SOUNDINGS, the national boating newspaper, in October 1998. It is reprinted with the permission of SOUNDINGS and of the author.]

As you pass through the C & D Canal, it's hard to believe that 2,600 men toiled six years with picks, shovels and buckets to hand-dig this 14-mile shortcut between Baltimore and Philadelphia.

Though the men labored for about 75 cents a day, the canal cost almost $2.5 million, and was one of the most expensive such projects of its time.

Completed in 1829, the canal connects the Elk River's Back Creek on the upper reaches of Chesapeake Bay with the mouth of the Delaware River in Delaware Bay. Such a canal had been proposed in the mid-1600s to shorten the sailing distance between Philadelphia and Baltimore by almost 300 miles. Construction began on a nearby route in 1804, but ceased when funds ran out in 1806.

Horses and mules pulled sailboats and barges through the C & D Canal, which originally was 10 feet deep and 66 feet wide. Two 22-foot-wide locks at Chesapeake City (soon combined into one), and one lock each at St. George and Delaware City, Del., raised the boats the 16 feet needed to cross Summit Hill, Del. The 1829 canal tolls included $1 a ton for iron ore, 30 cents a barrel for fish, $1.25 per pipe of French brandy. Passengers weren't charged.

When the federal government bought the canal in 1919, the Army Corps of Engineers shifted the eastern entrance south to Reedy Point and converted the waterway to a sea level canal 90 feet wide and 12 feet deep. By 1966, the toll-free canal had been expanded to 450 feet wide and 35 feet deep, capable of handling 970-foot vessels.

The C & D is the third busiest canal in the world, its volume exceeded only by the Panama and Suez canals. Nine thousand commercial vessels carrying 15 million tons of cargo, plus recreational boats, pass through each year.

Modern high-level highway bridges have eliminated the earlier problem of ships ramming the spans. Planned improvements will upgrade the Chesapeake City anchorage and increase the canal's depth and navigational aids.

The Army Engineers' C & D Canal Museum in south Chesapeake City interprets the canal's 300-year history and modern operation. On the grounds stands a replica of the 30-foot hexagonal wooden lighthouse that marked the former swing bridge at nearby Bethel until 1927. Three other such lighthouses marked the Chesapeake City and Delaware City locks.

To visit the museum, you can walk from Chesapeake Inn Marina or dinghy across the anchorage to the dock adjoining the public boat ramp.

Displays occupy the canalfront granite pumping station, erected in 1837 to provide enough water for the locks. The
two 30-foot tall steam engines, installed in 1851 and 1854, and the 38-foot lift water wheel operated until May 12, 1927. On that day, the canal opened as a sea level waterway with no locks. You can examine the 150-hp, single-beam, reciprocating, condensing steam engines, water wheel and associated machinery, all built in the mid-1800s. The lift wheel's 12 troughs raised 20,000 gallons of water per minute 14 feet from Back Creek into the canal above the lock. The engines are the oldest of their type on their original foundations in the United States and are a national historic mechanical engineering landmark.

Interactive displays include a diorama demonstrating how the lock and water wheel worked. You'll also see models of the former 270-foot covered wooden Summit Bridge, dredging equipment and a mule-drawn canal barge. A model depicts the Adams Floating Theater, a locally owned converted barge that brought entertainment to local ports from 1901 to 1946. (The Broadway musical "Showboat," though set on the Mississippi, was based on life aboard the Adams.)

Steamers stopped at Chesapeake City until the 1940s. Vintage photos show townspeople watching the vessels looking through with only inches to spare. Watching the progress of modern ships on the computer screen is intriguing. Each ship's name, dimensions, tonnage and ETA are displayed, and symbols show each vessel's progress past the canal's check points. Then you can go outside and watch them pass.

Ship traffic is monitored 24 hours a day from the Army Corps of Engineers' office across the parking lot. Here, Larry Brown (or another controller) maintains radio contact with the ships. He checks their progress on closed circuit TV, connected by fiber optic and microwave links to six cameras along the canal.

Two ships must have less than 190 feet combined beam for them to pass, and it's common to have three ships in the canal at once. Brown says, "We try not to have exciting things happen." Some of the ships have 105-foot beams.

Delaware pilots board westbound ships off Lewes, Del., and debark as the ship passes Chesapeake City, where a Maryland pilot boards for the voyage to Chesapeake Bay ports. Delaware pilots take over eastbound vessels from Maryland pilots here. You may see the men scrambling between the ship and the pilot associations' boats, which dock at Schaefer's Canal House.

The C & D Canal Museum is open from 7 to 4:15 p.m. Monday through Saturday.

ERIE CANAL DRYDOCK & BOATYARD RECONSTRUCTION PROGRESSES

by Bruce J. Russell—Contributing Editor

In the spring 1998 issue of *American Canals* an excellent article appeared describing the process of building a canal boat for use on the Ohio and Erie Canal, a 19th century towpath waterway which was closed decades ago. The author, Terry K. Woods, is the president of the *American Canal Society* and a resident of Canton, Ohio. He has served for many years as a consultant for the Museum of Canal Boat Building located in the Cuyahoga Valley National Recreation Area between Cleveland and Dayton. The purpose of this museum is to show how a wooden canal boat was built from scratch and then launched. In his article Mr. Woods describes in minute detail how the vessel was put together beginning with the selection of white oak and pine, the procuring of metal components, and the clearing of space in the yard. His piece finishes with an account of the methods used to make the boat watertight. Both from a technical and from a layman's perspective the article paints an accurate picture of just how a mid-19th century canal boat took shape.

In New York State, in the small town of Chittenango, situated between Rome and Syracuse, a canal boatyard is in the process of being completely restored to its 1870s appearance. Begun in 1986 when a group of volunteers started removing rubble and debris from the site, the project is well on its way to completion. Its purpose is to illustrate how a repair and construction yard actually functioned during the years when the Erie Canal was carrying its maximum tonnages, before railroads began capturing its business. During the 1850s and until the 1890s, the yard at Chittenango was one of the busiest on the waterway which connected Albany with Buffalo. It contained three "bays" or drydocks where vessels could be repaired. These were accessed directly from the canal by means of guard locks. Once the boat was inside, water was drained from the opposite end, leaving the boat resting atop a cradle or frame. The necessary tasks could then be performed. These involved caulking leaky seams, replacement of damaged or rotted hull planks, straightening of a rudder, or reconstruction of a bow or stern. Once the job was finished, water was readmitted into the chamber and the vessel was permitted to reenter the canal.

The Chittenango boatbuilding and drydock facility, by virtue of its three chambers or bays, was one of the best known along the Erie Canal. It employed about 50 men including carpenters, blacksmiths, and sawmill operators. The facility was completely self-sufficient. The wood was sawed into the required shapes and sizes by the mill located on site. Capable of converting huge logs into board lumber, it was powered by a stationary steam engine. These logs,
mainly oak, were obtained from nearby forests or arrived from elsewhere on canal boats. The metal parts used to repair and fabricate new vessels were produced at the yard's blacksmith shop which also did outside work to justify its existence. Canal boats were primarily made of wood and metal was only required for certain items.

Besides being able to repair canal boats, the facility at Chittenango also manufactured them. Over the years from 1855 to 1895, a number of types were produced. Working from plans, the master builder and his staff could create a vessel designed to handle bulk commodities such as grain or coal. On the other hand more specialized kinds of craft could be made to order. Customers were often freight-handling companies which owned fleets of boats. On the opposite extreme were individual captains who possessed just one. In this case there would be a requirement for a cabin at the rear where the owner and his family could live and sleep. Such quarters were extremely cramped but somehow people managed.

At Chittenango the boats were assembled adjacent to a special launching basin. When they were finished they were slid sideways into the water. In Mr. Woods article the process of testing for water tightness was described. The vessel was filled with water and then an inspection was done for leaks. Upon conclusion of the test a hole was drilled in the bottom and the water drained. In Chittenango this was undoubtedly done in one of the three drydock chambers. The walls of these approximately 100 foot long bays were made from coarse rubble stones. There is no evidence they were lined with wood planking. However the boats were gently nudged in and out.

The Chittenango boatyard also featured a general office building as well as a mule barn and bunk house. The freight companies generally had arrangements with yards such as Chittenango's to supply them with mules for their heavily laden vessels. When they arrived, the existing team was unhitched and a fresh one put in its place. The tired team rested for a day and was picked up by a boat going in the opposite direction. By having boatyards provide mules, for a fee of course, these firms didn't have to bother with the responsibility of owning animals. Sometimes the freight boat men would spend the night at Chittenango, and the dormitory was normally fully occupied. The mule rentals plus the operation of the bunk house, which also served meals, brought extra revenue to the canalside facility.

Also at Chittenango was a general store which sold provisions to the boatmen. Anything from food to beer to animal feed was available. In general women were in charge here—the wives of the boatyard workers. The trip from Albany to Buffalo was over 350 miles and the men running the vessels had to reprovision numerous times during their journey. Furthermore they needed a place where they could drop off letters for posting and by prearrangement pick them up. Likewise such stores were places where gossip and news from up and down the waterway could be picked up and exchanged.

Business declined at Chittenango after 1880 and the yard shut down sometime during the 1990s. Although the adjacent enlarged Erie Canal continued operations until 1918, when it was replaced by the parallel New York State Barge Canal, traffic was less and less. During its declining years, there were experiments with steam-powered canal boats. Many believed that if small, compact steam engines were fitted into the rear of the wooden vessels they would be more economical to operate than relying on animals. Chittenango's yard never became involved in steam propulsion. All of its output was built specifically for mule haulage. Thus while some steam navigation occurred during the enlarged Erie Canal's twilight years, Chittenango boatyard and drydock had already gone out of business.

Following closure, the site of the once-bustling facility became deserted. One by one the abandoned structures either fell down or burned. Stones from the three drydock chambers were removed by local builders and farmers and incorporated into other structures. Only the
lowest rung of stonework survived. The wooden gates leading to the bays simply rotted away. In time the area where the facilities existed became a garbage and refuse dump and people forgot what had originally been there. Only senior citizens could recollect the days when the sawmill was buzzing and the framework of 90-feet wooden vessels took shape. By the 1920s these individuals had all passed from the scene.

During the mid-1980s the existence of a boat building and repair operation in Chittenango was rediscovered by local historians, members of the New York State Canal Society, and others. Although there was always a written historical record of it, nobody paid a great deal of attention. Perhaps this was because hardly anything was left. Furthermore since so many other canal structures existed which were far more intact, such as aqueducts and culverts, they received the most attention. Nevertheless, there were those who wondered where the wooden canal boats were built, how they were built, who made them, et cetera. It must be remembered that at its peak, during the 1870s, over 3,000 vessels were moving on the enlarged Erie Canal (an 1850s reconstruction of the original 1820s waterway which had been built to much smaller dimensions and had become severely limited in its ability to handle traffic along the busy Albany-Buffalo corridor—until the coming of the railroads, a major route to the west for settlers).

A decision was ultimately made to reconstruct the Chittenango boatyard and drydock the way it looked about 1870. It would serve as a living memorial to the thousands of people who earned their livelihood building wooden vessels for the Erie as well as other New York State inland waterways. Furthermore it would fill a gap in canal history. While most people are familiar with the life of the boatmen, made immortal by songs such as “low bridge, everybody down,” few knew much about the lives of those men who cut the wood for the boats, who took measurements, who shaped the pieces and fitted them together into a vessel capable of remaining afloat while filled with heavy loads. Their story also needed telling. Although written accounts have a purpose, and while use of models and dioramas certainly help to bring things to life, nothing beats having the real item. Thus the goal of the people at Chittenango was to completely reconstruct the boatyard to the approximate way it looked during its prime.

Because much of the drydock foundations remained intact, all that was needed was to obtain similar stones and rebuild them. This was done and the result is most impressive. In addition the wooden gates which permitted boats to enter and exit directly from and to the Erie Canal were also fabricated, using historical drawings. The wooden cribs upon which they sat while being worked on have likewise been put into position. The drains which allowed water to flow out of the rear of the bays have also been installed. In essence what was present in 1870 is present today, thanks to a great deal of research and hard work.

Two of the buildings which formed part of the Chittenango complex have been reerected atop their original foundations. The sawmill/blacksmith shop and the canal store are now open for inspection. Inside are many exhibits as well as interpretive displays. For example, a visitor to the sawmill can see first hand how giant saws were used to create boards from gargantuan logs. Inside the blacksmith shop connected to the sawmill are tools used to make the various metal fittings for canal boats. Also the shoes for the mules were hammered into shape here. And finally, many of the woodworking implements such as chisels, adzes, and drills were manufactured in this shop. After all in the 1870s it wasn’t possible to order them from the Sears catalog. Boatbuilders and repairers had to be as self-sufficient as possible.

Awaiting restoration at Chittenango are the general office building, the mule barn, and the bunkhouse. Once funds become available, they will arise from their still-surviving stone foundations. When all of this work is finished, Chittenango will look approximately the way it did when it repaired over 50 vessels per year and built from 5 to 10. It will then be the most authentic example of a New York State canal boatbuilding and repair facility in existence. A visit will be a genuine educational experience both for the serious student of American canals and for the general public. The target date for completion of everything is 2010. If money is available in sufficient amount, this timetable can be advanced.

One of the long-term projects at Chittenango is for a late 19th century wooden Erie Canal boat to be built in one of the drydock chambers or on dry land adjacent to one. The sawmill would actually cut and shape the wood and as work progressed the entire process could be documented. No modern electric power tools or appliances would be used. Ancient methods of bending wood to create rounded bow and stern sections would be relied upon. (The principle one is steaming. The pieces are
placed inside a box which is then filled with super-hot steam. Eventually the fibers of the wood break down resulting in temporary pliability.) Most of the steps outlined by Mr. Woods in his previously-mentioned article would be adhered to.

When the replica canal vessel was finished it would be launched the traditional way and then be available for short trips. The section of the enlarged Erie Canal passing through Chittenango retains water because it is used as a feeder for the New York State Barge Canal. Water from reservoirs near Syracuse flows east towards Rome where it is introduced into the summit level of the newer waterway. Although the depth is now less than five feet compared to over seven in canal days, it can be raised without any major difficulties. A visit to the restored boat yard combined with a short trip on an actual remnant of the Erie Canal should be a major tourist attraction. It will certainly be superior to simply reading about how 19th century boat building was done.

Chittenango is easily reached from either Syracuse or Utica, N.Y. The museum is open during the busy summer season and on weekends at other times. A small admission price covers the basic costs of operation. Substantial donations will make possible the realization of the dream to have a totally reconstructed facility.

(Concluded from page 3) Canal Calendar

July 25, 1999. C&O Canal Continuing Hike Series: from Dargans Bend up, beginning at 10:30 a.m. Contact: Pat White, (301) 977-5628.

September 11, 1999. A.C.S. annual meetings: Board of Directors at 10 a.m., membership at 1 p.m., at the National Canal Museum, Easton, Pa. N.B.—this is a change from the date announced in our last issue. Contact: Terry Woods, (303) 822-4621.

September 26, 1999. C&O Canal Continuing Hike Series: from Lock 56 (Peare) up to Siding Hill Aqueduct, beginning at 10:30 a.m. Contact: Pat White, (301) 977-5628.

November 28, 1999. C&O Canal Continuing Hike Series: from White’s Ferry down, beginning at 10:30 a.m. Contact: Pat White, (301) 977-5628.

DEADLINE: Material for our next issue must be on the editor’s desk not later than April 1st, 1999.

SCHOHARIE AQUEDUCT: A PICTORIAL ESSAY
by Bruce Russell, contributing editor

When the Erie Canal was completed in 1825, Schoharie Creek was crossed by means of a slacker-water pool. A dam was built to hold back the water and boats crossed without having to worry about current. When the decision was made to enlarge and improve the original waterway, one of the projects was to erect a huge 14-arch stone aqueduct at Schoharie. Work commenced in 1839 and the project was finished in 1841. It was considered an amazing feat of canal engineering. It is 624 feet long. The original waterway was realigned in order to pass over this aqueduct. In the process, its level was raised eight feet if either side.

Schoharie Creek Aqueduct, situated near Schenectady, New York, lasted until 1917, when the enlarged Erie Canal was replaced by the New York State Barge Canal. For a number of years it survived essentially intact, but then its eastern portion was dynamited. The reason was that it interfered with ice flows along the creek. The surviving portion became structurally weak during the 1970s and New York State has spent a considerable amount of money stabilizing it by installing metal rods and beams. For now, it seems secure. In this view, we see the aqueduct crossing Schoharie Creek. The dynamited gap is at the far end.
Following closure of the enlarged Erie Canal in 1917, the aqueduct at Schoharie began to deteriorate. First to vanish was the huge wooden trough which carried the canal filled with water. It slowly rotted away, and no trace remains. In this view looking east, we can see how the trough was positioned atop the surviving stone supports. This trough was wide enough for two boats to pass one another.

In the view we can see the towpath plus the place where the wooden trough holding the canal used to be. It was supported by the stonework which remains. In canal days, the wooden troughs of aqueducts had to be replaced every ten years. This work was done during the winter when the waterway was shut down. The enlarged Erie Canal had five enormous aqueducts—at Crescent, Rexford, Schoharie, Montezuma, and Rochester. For their time, they were viewed as engineering marvels.

PREHISTORIC CANALS OF NATIVE AMERICANS
by William Trout III
One of the most provocative talks at the World Canals Conference in Illinois was by James Marshall, a retired civil engineer who has for years been rediscovering, analyzing, and documenting early Indian earthworks in Ohio, Florida, Louisiana, Illinois, and other places. Since 1965 he has located more than 230 sites of prehistoric construction, by searching through archives and aerial photos and then carrying out surveys in the field. At some of these sites he has found what may well have been canals which Native Americans built for their canoes.

In his talk Marshall was careful not to jump to conclusions about these prehistoric canals and about prehistoric canal engineering, but the evidence for them in North America is clearly worth serious research. In a summary of his talk, he reported that “In Florida a canal can be traced on the ground using air photos across Sanibel Island near Fort Myers and inland from there to Lake Okeechobee. Canals were also reported by De Soto circa 1547 in what is now Arkansas. Canals have been reported in the Alaska panhandle, in Kentucky near Hickman, and in Chicago, Illinois, south of Lake Calumet. There is likely to be a large number of prehistoric canals still waiting to be discovered.”

Those interested in canals and archaeology should keep an eye open for possible prehistoric canals. If you find any, Mr. Marshall would like to know. His address is 1828 S. Roselle Rd., Schaumburg, IL 60172-5016.

HELP WANTED
To: American Canal Society
Re: American Canal Exhibition
In 1999 we hope to have a visit from an intrepid sailor, Albert Hickey, who is going to reconstruct a journey first made in 1899 by Howard Blackburn from Gloucester Massachusetts. To tie up with it we would like to stage a small exhibition on the waterways of the United States of America. Any information or contacts you can give us would be much appreciated. We are hoping to obtain leaflets, line map drawings, historic photographs etc. of the American canals.

Names and addresses of Canal Museums in America would also be of considerable use.
Thank you.
Yours sincerely
A. J. Conder, Curator
The National Waterways Museum at Gloucester
Lanthony Warehouse, Gloucester Docks
Gloucester GL1 2EH, England
phone: Gloucester (01452) 318054
BOOK REVIEW

reviewed by Linda J. Barth

Inland Waterways of Great Britain, now in its seventh edition (1998), was written and edited by Jane Cumberledge. A compilation describing all of Great Britain’s canals and river navigations, this easy-to-read book improves on the sixth edition (1985) in several ways.

The major portion of this fine reference work lists all waterways alphabetically. Each separate entry contains: a brief history; the address of the local authority; notes about the towpath, locks and bridges; navigation information; speed limit; connections to other waterways; facilities for the boater; a distance table; and maximum vessel dimensions. There are also two maps for each waterway: an inset showing its location within the country and a detailed map giving the right-of-way, including towns along the route.

The previous edition quickly became out-of-date as improvements and changes to the waterway network have taken place. As a result, the current edition includes several waterways which had been abandoned and removed from the sixth edition and which have been returned to navigation in the last fifteen years. These newly-reopened waterways are the result of teamwork between British Waterways and many volunteers from local societies. In addition, the new book also includes various canals currently under restoration which will be reopening soon.

All charts of navigations have been redrawn and a map of the national network is once again included in the back of the book.

In addition to the detailed canal information, the author has also included information on the Inland Waterways Association, the Waterway Recovery Group, recreational and commercial usage, wildlife, a short history of the waterways of Britain, engineering and waterway structures, navigation, authorities and regulations. There is also a comprehensive list of hireboat companies and suggestions for planning your canal vacation.

Canal Lantern

INFORMATION PLEASE

Dear A.C.S.

About 20 years ago, I purchased a canal lantern in New York State. I paid $50.00 for it.

It is 18 inches tall and is made of heavy duty aluminum painted black, with a red globe. On the very top the words, “The Non-Sweating Adlake Lamp, Chicago” are embossed. On the side of the top “New York Canals” is embossed. Please find enclosed snap shot of it.

I have enjoyed it all these years, but would like to sell it, especially if it has increased in value. It is in very good condition except for a few chips in the globe near the bottom.

I would appreciate it if you could tell me the approximate value its age and anything else about it.

Sincerely,
Joan Sulser
P.O. Box 170
Montpelier, Iowa 52759

LETTERS TO THE EDITOR

BRITISH CANAL CRIME FICTION

Dear Mr. Ross:
The article on “British Canal Crime Fiction” in the Autumn issue of American Canals wondered if the locations mentioned in Peter Lovesey’s Bloodhounds are in fact real. Yes, they are.

We have taken eight trips on the English Canals and three years ago the Kennet and Avon was part of our journey. The Somerset Coal Canal is about five and a half miles South of Bath. Currently there is a short privately owned arm off of the main canal, used for a boat yard and private moorings. The Avoncliff Aqueduct is about two and a half miles further from Bath, where it crosses over River Avon. Both these areas are in one of the more attractive stretches of the canal.

Also, I don’t have handy the prior issue of American Canals which discussed mysteries, but if it didn’t mention another Peter Lovesey book, Swing, Swing Together, I commend it to your readers. It is murder mystery which follows the journey of Jerome K. Jerome’s classic Three Men in a Boat.

Yours truly,
Jerry Coleman

Dear Mr. Ross,

With reference to the note in American Canals Vol. XXVII No. 4 p.5 you may be assured that the Kennet and Avon Canal, the Somerset Coal Canal and the Avoncliff Aqueduct are all indubitably real. Besides Peter Lovesey’s Bloodhounds, a few more canal titles by British crime authors may be noted. There is David Armstrong, Night’s Black Agents (Harper Collins, 1984), set on a British waterway.

Two other books feature French canals. In Freeman Wills Croft’s The Pit-Prop Syndicate (Collins, 1922), a proposed trip by motor-launch from Bordeaux via the Garonne and the Canal du Midi to the Mediterranean is a “cover” story for two young adventurers to explore a suspected smuggling operation in the Lesse river near Bordeaux. The launch, so its owner says, “will go down any of the French canals,” but it never is, in the event, put to the test. Much more recently, Monsieur Pamplemousse Afloat (Allison & Busby, 1998) by Michael Bond—creator of Paddington Bear—sees ex Sureté Inspector Pamplemousse, now an Inspector for a good food guide, and his intelligent bloodhound Pommes Frites on a canal boat cruise along the canal de Bourgogne near Dijon. He has to cope with some ill-assorted passengers including two women, one British, one American, who both try to put Pamplemousse into compromising positions, with the fact that on the boat there is a notice “chiens interdits” and, more seriously, with murder. There is not much canal travel, though.

Yours Sincerely,
Philip L. Scowcroft
Dear Sir:

Making my annual six-week visit from the English narrowboat which has been
home for many years, and catching up
on back issues of AC, I am moved to
add a word or two about canal-oriented
mystery fiction. *Unicorn*’s shelves con-
tain most of the books cited by Mr.
Scowcroft, but I was happy to learn of a
couple more, and will be searching for
copies. (Do American readers know
about Hay-on-Wye, the little Welsh bor-
ter town which houses nearly forty book
shops?)

I can make only one addition to the
Scowcroft list. *Rose*, by Martin Cruz
Smith, of *Gorky Park* fame, is largely set
down on a coal mine in Victorian Stafford-
shire, but a crucial chapter involves the
canal which is, of course, the essential
transport medium for the mine. The plot
requires the most circumstantial detail
on the structure and operation of a lock;
unfortunately, Mr. Smith has got abso-
lutely every detail wrong. At the climax,
it is impossible to rescue a drowning
man by opening the bottom gates be-
cause a queue of boats below is
crowded against them!

Only a canaller would notice these
errors, but they do make one wonder
about Smith’s command of the tech-
niques of Victorian mining, which had
greatly impressed this non-miner before
he read the canal chapter. There are
some much less serious slips in Colin
Dexter’s *The Wench is Dead*. In one, a
character hiding out in the canal under
the stern of the mid-19th century horse-
drawn narrowboat, looks up and sees
in considerable detail the distinctive
striped tiller of a 20th century motorboat.
(Morse fans here can look forward to
the television version of this tale, already
broadcast in England. Alas, it would
appear to be the veteran inspector’s last
telly case.)

I would be delighted to correspond with
American Canal readers on this or any
other English canal topic. Or to chat:
413-562-9296. Letters will be forwarded
if I have returned to England, or sent
direct to: 1 Canaan Cottage, Old Warwick
Road, Lapworth, Solihull B94, U.K. 0973
483 724 will reach me either in the cot-
tage or aboard Unicorn.

Best Wishes,
Jeremy S. Scanlon

ELECTRIC PROPULSION
OF CANAL BOATS

The application of the trolley line to the
propulsion of canal boats was recently
the subject of an experiment upon the
Erie Canal under the auspices of the
government of the State of New York.
The plan tried was that submitted by the
Westinghouse Electric Company, of
Pittsburgh, Pa., and the results obtained
were most satisfactory.

A section a mile long of a canal level
east of Brighton, near Rochester, N.Y.
was selected for the experiment. Work
was begun on November 13 and on
November 17 the span wires and trol-
ley wires were in position and the boat
was ready for the experiment. A canal
boat, rechristened the Frank W. Hawley,
was fitted with Westinghouse motors. A
double line of trolley wires was used and
the boat carried two trolley poles, thus
working without grounding. The switch-
board was located near the helm. The
Rochester Railway Company supplied
the electric power. The Niagara Power
Company was interested jointly with
the Westinghouse Company in the trial,
and the name of the boat was that of the
representative of the Niagara Company,
which may have much to do in the fu-
ture with canal transit. On Friday, No-
ember 17, a private trial was made with
success. On Saturday, the official trial
took place.

Governor Flower and a large party of
guests and representatives of the inter-
ests concerned were on the boat. To the
executive was assigned the turning of
the motor switch. On his doing so, the
motor started and the propeller began
to churn up the water. The boat started
off and in a few minutes was moving
along at about four miles an hour.
Curves and a bridge were passed with-
out trouble and a lock was entered. The
boat was loaded with sand ballast and
her deck was crowded with people. A
strong head wind and a strong current
were encountered.

Other causes also did much to inter-
ference with a successful issue. The Roch-
ester Railway Company failed in main-
taining enough voltage. The pressure
given was from 200 to 250 volts instead
of 500 volts, as it should have been.
Under this pressure, 60 amperes of cur-
cent were taken, so that about 15,000
watts at the most were absorbed, indi-
cating about 20 horsepower. The boat
was an everyday canal boat, with an old
type propeller. Its preparation for the trial

CORRECTION

A.C.S. MEETING-1999

The date previously announced for
the next meeting of the American Can-
al Society is incorrect.

The date to reserve is Saturday,
September 11th. The board meeting
will be at 10 a.m., the membership
meeting at 1 p.m.

Place: National Canal Museum,
Easton, Pennsylvania

Trial of Electric Trolley System on the Erie Canal.
consisted in the removal of its boiler and engine and the introduction of two Westinghouse street-car motors. Each was of 25 horsepower, and the two motors were connected directly to the propeller shaft. Under the circumstances, the experiment was a very great success.

The trolley line was of No. 0 wire. The lines were about five feet apart and were strung about two-thirds of the width of the canal from the berm bank or tow-path. The trolleys were regular streetcar trolleys. It is proposed to use a trolley running on the wire and connected by a flexible conductor with the boat, so as to permit the craft to be steered in any direction. Under the present arrangement, the trolley lines have to be followed within the limits of a small lateral deviation.

Much expense it is hoped can be saved by this use of electricity. The maintenance of the Erie Canal costs the State of New York almost $1,000,000 per annum, of which the greater part is devoted to the tow-path. The abolition of the tow-path would save in this item a good deal of money. By increased average speed, it is believed that the capacity of the canal can be doubled or trebled, while material reduction can surely be made in the help required to run the boat. The trial is due to Governor Flower. He secured an appropriation of $10,000 from the State legislature for the purpose. The experiment cost about $5,000 and its cost was divided between the State and the Westinghouse Company.

Submitted by William Dzombak

CANALS OF CANADA - A SMALL CORRECTION

by Des Harris

Robert Legget’s book *Canals of Canada* is rightly recognized as the standard reference work on canals in this country. A recent visit to the East Kootenays in British Columbia, however, revealed the need for a minor correction to this volume. In Mr. Legget’s description of British Columbia’s Baillie-Grohman Canal on p. 107 he writes:

“If he stops at the small town named Canal Flats, the observant traveller may see this attractive sign erected by the Department of Recreation and Conservation of British Columbia:

A DREAM FULFILLED

It was the dream, in the 1880’s, of W.A. Baillie-Grohman, British sportsman and financier, to reclaim these fertile lands from the annual river floods. His canal at Canal Flats diverted part of the Kootenay into the Columbia, but was abandoned. The first successful reclamation was in 1883. Now 25,110 acres lie secure behind 53 miles of dykes.” [sic]

A recent investigation has shown that the observant traveller would need very good eyesight indeed to see this sign from this location. During a visit to the Canal Flats area in June 1997 to check on the current status of the Baillie-Grohman Canal, a friend and I searched the highway for several kilometers on each side of Canal Flats, but were unable to find the described sign. We did, however, find a Department of Recreation and Conservation sign which reads:

CANAL FLAT

In 1808 Davis Thompson named this flat “McGillivray’s Portage” as he crossed from Columbia Lake to the Kootenay River. In 1888 W.A. Baillie-Grohman joined the two waterways by a canal with a single lock. Regulations aimed at preventing Columbia River flooding so restricted the operation of the canal that only two steamboats passed through—the Gwendoline in 1894, and the North Star in 1902.

Puzzled by the absence of the sign mentioned in Legget’s book, we enquired in the local pub and the general store, but drew a complete blank. Finally giving up the search we journeyed on to Kimberley and the next day visited the Historic Park at Fort Steele, where I had arranged to contact the curator, Derryll White, since he had a significant quantity of background information on file dealing with the Baillie-Grohman Canal.

While there I mentioned to Mr. White that we had been unable to find the sign and he indicated that he had not been able to find it in Canal Flats either. It was then, on rereading the wording, that it occurred to me that there were nothing like 25,000 acres of fertile land in Canal Flats, and that the sign might possibly be referring to the fertile valley bottom round Creston, 150 kilometres to the southwest, where the Kootenay River swings back up into Canada after an extensive detour into the States. It was, in fact, this area round Creston that Baillie-Grohman was interested in reclaiming from spring flooding by diverting the Kootenay River into Columbia Lake (headwaters of the Columbia River) at Canal Flats. Since we were re-turning to Vancouver via Creston it occurred to me that we would have an opportunity to test this hypothesis.

Upon arrival in Creston a cursory survey did not reveal the sign, so I enquired at the Visitor’s Information Bureau. The girl behind the counter knew nothing about it, but an older lady in the office remembered it and gave directions how to reach it—“Follow a track off to the right from Highway 3 heading west out of town, near a Remax sign, just before crossing the bridge over the Kootenay River. The sign is out in the middle of a field.” The location of a tourist information sign in the middle of a field seemed a little strange, but it was at least a lead so we decided to follow it.

Our instructions took us along a very muddy lane (it’s a good job that my Subaru has all-wheel drive) and we ended up on the banks of the river, near a dilapidated trailer with a dead car and assorted broken furniture scattered around. Unable to see any indication of the sign we retraced our footsteps to a high point in the lane and scanned the entire area with binoculars, to no avail. My friend, who has an agricultural background, pointed out that most farmers would be rather irritated by a sign which interfered with their ploughing in the middle of a field, and might well be inclined to move it to a less obstructionist position.

We could see the farmhouse on the other side of the highway, and decided to enquire there as to whether they knew anything about it. The farmer’s wife initially disclaimed any knowledge of the sign, and then recalled a sign a few miles out of town on Highway 3A heading north towards the Kaslo ferry across Kootenay Lake. She had stopped to read it a few years ago, but could not remember what was on it or whether it was still there.

Retracing our tracks to the junction of Highway 3 and Highway 3A just west of Creston, we headed north on 3A for about three kilometres and found a sign on the west side of the road, overlooking a magnificent panorama of the Lower Kootenay Valley. The wording on the sign was precisely as quoted in Robert Legget’s book. Our quest had ended successfully, but owners of copies of *Canals of Canada* should perhaps make a penciled notation in the margin of p. 107 as to the actual location of the sign mentioned!